Phone: +91-836-2215316(O) Email: physics@kud.ac.in



Fax:+91836-2747884, 2771275

## KARNATAK UNIVERSITY, DHARWAD DEPARTMENT OF STUDIES IN PHYSICS ಭೌತಶಾಸ್ತ್ರಅಧ್ಯಯನ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ "NAAC Accredited with "A" Grade 2014"

## CERTIFICATE

This is to certify that the curriculum of M. Sc. in Physics has been revised during 2018-19 and 25% of content was replaced/added/modified.

Chairman, BOS PROFESSOR & CHAIRMAN DEPARTMENT OF PHYSICS KARNATAK UNIVERSITY DHARWAD-580003

## Karnatak University, Dharwad Department of Studies in Physics

## Percentage (25%) of Revision of Syllabus

| Course Code and<br>Name | M. Sc. Physics Syllabus – 2011 – onwards               | M. Sc. Physics Syllabus – 2018 – onwards               |
|-------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                         | Semester - I                                           | Semester - I                                           |
| PG85T101                |                                                        |                                                        |
| (Course PHCT            | Unit I                                                 | Unit I                                                 |
| 1.1):                   |                                                        |                                                        |
| Mathematical            | Special functions: Helmholtz equation, Separation of   | Special functions: Beta and gamma functions.           |
| Methods of              | variables in spherical and cylindrical coordinates,    | Solution of differential equation using power series-  |
| Physics and             | series solutions – Frobenius method.                   | Frobenius method.                                      |
| Computer                |                                                        |                                                        |
| <b>Programming</b>      | Legendre functions: Legendre polynomials,              | Legendre functions: Legendre polynomials,              |
| Teaching hours per      | Rodrigue's formula; generating function and recursion  | Rodrigue's formula; generating function and recursion  |
| week: 4                 | relations; Orthogonality and normalization; associated | relations; Orthogonality and normalization; associated |
| No. of Credits: 4       | Legendre function, special harmonics.                  | Legendre function, special harmonics.                  |
|                         | Bessel functions: Bessel functions of the first kind,  | Bessel functions: Bessel functions of the first kind,  |
|                         | recursion relations, Orthogonality.                    | recursion relations and orthogonality.                 |
|                         | Hermite functions: Hermite polynomials, generating     | Hermite functions: Hermite polynomials, generating     |
|                         | function, recursion relations; Orthogonality.          | function, recursion relations; Orthogonality.          |
|                         | Laguerre functions: Laguerre and associated            | Laguerre functions: Laguerre and associated            |
|                         | Lauguerre polynomials, recursion relations;            | Lauguerre polynomials, recursion relations;            |
| PG85T101                | Orthogonality.                                         | Orthogonality.                                         |
| (Course PHCT            |                                                        |                                                        |

| 1.1):<br>Mathematical<br>Methods in | Applications of special functions to problems in physics.                                                                                                                                                                                                                                                                                                                                                                    | Applications of special functions to problems in physics.                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Physical Sciences</b>            | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit II                                                                                                                                                                                                                                                                                                                                                              |
|                                     | Matrices: Orthogonal, Hermitian, and unitary<br>matrices; eigenvectors and eigenvalues, diagonalization<br>of matrices, Matrix representation of linear operators,<br>eigenvalues and eigenvectors of operators,<br>simultaneous eigen vectors and commutativity,<br>applications to physical problems                                                                                                                       | matrices; eigenvectors and eigenvalues,<br>diagonalization of matrices, Matrix representation of<br>linear operators, eigenvalues and eigenvectors of<br>operators, simultaneous eigen vectors and<br>commutativity, applications to physical problems                                                                                                               |
|                                     | <b>Tensors:</b> Curvilinear coordinates, Coordinate transformation in linear spaces, definition and types of tensors, contravariant and covariant tensors, symmetric and antisymmetric tensors, Tensor algebra : equality, addition and subtraction, tensor multiplication, outer product; contraction of indices, inner product, quotient theorem, Kronecker delta, metric tensor, Christoffel symbols. Tensors in physics. | <b>Tensors:</b> Types of tensors, contravariant and covariant<br>tensors, symmetric and antisymmetric<br>tensors, Tensor algebra : equality, addition and<br>subtraction, tensor multiplication, outer product;<br>contraction of indices, inner product, quotient<br>theorem, Kronecker delta, metric tensor, Christoffel<br>symbols. Tensors in physics. Problems. |
|                                     | Green's functions:definitionandproperties.(Removed)12 Hours                                                                                                                                                                                                                                                                                                                                                                  | 12 Hours                                                                                                                                                                                                                                                                                                                                                             |
|                                     | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit III                                                                                                                                                                                                                                                                                                                                                             |
|                                     | <b>Group Theory</b><br>Groups, subgroups and classes; homomorphism and<br>isomorphism, group representation, reducible and<br>irreducible representation, Schur's Lemmas,<br>orthogonlity theorem, haracter of a representation,<br>character tables, decomposing a reducible                                                                                                                                                | <b>Group Theory:</b> Groups, subgroups and classes;<br>homomorphism and isomorphism, group<br>representation, reducible and irreducible<br>representation, Schur's Lemmas, orthogonlity<br>theorem, character of a representation, character<br>tables, decomposing a reducible representation into                                                                  |

| representation into irreducible representations,<br>construction of representations, lie groups, rotation<br>groups SO(2) and SO(3).<br>12 Hours<br>Unit IV (Removed)                                                                                                                                                                                                                     | irreducible representations, construction of<br>representations, lie groups, rotation groups SO(2) and<br>SO(3). Problems<br>12 Hours<br>Unit IV (Newly Added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Fortran Programming :</b> Basic concepts, constants, variables, I/O statement, formatted input and output statements, built-in functions, decision making, branching and looping statements, one and two dimensional arrays, Function subprograms, subroutines, simple programming using FORTRAN 77. Programming on numerical methods: least square curve fitting, Simpson's 1/3 rule. | Monte Carlo methods: Introduction, definitions,<br>Illustration of the use of Monte Carlo Methods,<br>Examples on Particles in a Box and Radioactive<br>Decay, Probability Distribution Functions,<br>Multivariable Expectation Values, The Central Limit<br>Theorem, Definition of Correlation Functions and<br>Standard Deviation, Random Numbers and properties,<br>Improved Monte Carlo Integration, Change of<br>Variables, Importance of Sampling, Acceptance<br>Rejection Method, Monte Carlo Integration of<br>Multidimensional Integrals, Brute Force Integration,<br>Importance of Sampling, Classes for Random Number<br>Generators. Metropolis algorithm and detailed<br>balance, Ising model. Examples and problems.<br>12 Hours |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Mathematical Methods for Physicists (4th edition): George Arfken &amp; Hans J. Weber, Academic Press, San Diego (1995).</li> <li>Mathematical Methods in Physical Sciences (2nd edition): Mary L. Boas, John Wiley &amp; Sons, New York (1983).</li> <li>Mathematical Physics: P. K. Chatopadhyay, Wiley Eastern Ltd., New Delhi (1990).</li> </ol>                              | <ol> <li>Mathematical Methods for Physicists (4th edition): George Arfken&amp; Hans J. Weber, Academic Press, San Diego (1995).</li> <li>Mathematical Methods in Physical Sciences (2nd edition): Mary L. Boas, John Wiley &amp; Sons, New York (1983).</li> <li>Mathematical Physics: P. K. Chatopadhyay, Wiley Eastern Ltd., New Delhi (1990).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                   |

|       | Introduction to Mathematical Physics: Charlie<br>Harper, Prentice-Hall of India Pvt. Ltd., New<br>Delhi (1995)                                                                                                                      |        | Introduction to Mathematical Physics: Charlie<br>Harper, Prentice Hall of India Pvt. Ltd., New<br>Delhi (1995).                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.    | Matrices and Tensors in Physics (3rd edition):<br>A.W. Joshi, New Age International (P) Ltd.<br>Publishers, New Delhi (2000).                                                                                                       | 5.     | Matrices and Tensors in Physics (3rd edition):<br>A.W. Joshi, New Age International (P) Ltd.<br>Publishers, New Delhi (2000).                                                                                                       |
| 6.    | Elements of Group Theory for Phyicists(3rd Edition): A.W.Joshi., Wiley Eastern limited (1982).                                                                                                                                      | 6.     | Elements of Group Theory for Phyicists(3rd Edition): A.W.Joshi.,Wiley Eastern limited (1982).                                                                                                                                       |
| 7.    | Programming with FORTRAN: K.R.Venugopal<br>and H.S.Vimala, Tata McGraw Hill, New Delhi<br>(1998)                                                                                                                                    | 7.     | Monte Carlo Methods, , 2nd Edition, M.H.<br>Kalos, P.A. Whitlock, Wiley VCH                                                                                                                                                         |
| Refer | ence Books                                                                                                                                                                                                                          | Refere | ence Books                                                                                                                                                                                                                          |
|       | Mathematical Methods for Physics and<br>Engineering: K. F. Riley, M. P. Hobson and S.<br>J. Bence, Cambridge Univ. Press Cambridge<br>(1998).<br>Advanced Mathematics in Physics and<br>Engineering : Arthur Bronwell, Mc Graw-Hill |        | Mathematical Methods for Physics and<br>Engineering: K. F. Riley, M. P. Hobson and S.<br>J. Bence, Cambridge Univ. Press Cambridge<br>(1998).<br>Advanced Mathematics in Physics and<br>Engineering : Arthur Bronwell, Mc Graw Hill |
| 3.    | Book Company, New York (1953).<br>Group theory and its Applications to Physical<br>Problems: M.Hammermesh, Addision-Wesley,<br>Mass (1962).                                                                                         | 3.     | Book Company, New York (1953).                                                                                                                                                                                                      |
| 4.    | Schaum's Outline Series: Programming with<br>FORTRAN : Seymour Lipschutz & Arthur Poe,<br>McGraw-Hill company, Singapore (1982).                                                                                                    | 4.     | Schaum's Outline Series: Programming with<br>FORTRAN : Seymour Lipschutz& Arthur Poe,<br>McGraw Hill company, Singapore (1982).                                                                                                     |
| 5.    | Schaum's Outline Series: Vector Analysis and<br>Introduction to Tensor Analysis: M.R. Speigel,<br>McGraw-Hill Company, Singapore (1983).                                                                                            | 5.     | Schaum's Outline Series: Vector Analysis and<br>Introduction to Tensor Analysis: M.R. Speigel,<br>McGraw Hill Company, Singapore (1983).                                                                                            |
|       |                                                                                                                                                                                                                                     | 6.     | Mathematical Physics A. K. Ghatak, I. C. Gayal and S. J. Chua, Trinity Publications,                                                                                                                                                |

|                              |                                                                                                  | 2017.<br>7. Computational Physics. J. M. Thijssen ,                                     |
|------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                              |                                                                                                  | Cambridge - 2007.                                                                       |
|                              |                                                                                                  | 8. Understanding Molecular simulations , D. Frenkel and B. Smith, Academic press, 2002. |
|                              |                                                                                                  | 9. Steven E Koonin and D C Meredith,<br>Computational Physics [fortran version],        |
|                              |                                                                                                  | Perseus Books.                                                                          |
|                              |                                                                                                  | 10. Numerical Recipes, Cambridge Univ. Press.                                           |
| PG85T102                     | TL-: *4 T                                                                                        | 11                                                                                      |
| (Course<br>PHCT1.2):         | Unit I                                                                                           | Unit I                                                                                  |
| Classical                    | Lagrangian Mechanics: Constraints, generalized co-                                               | Lagrangian Mechanics: Generalized coordinates,                                          |
| Mechanics                    | ordinates, D'Alembert's principle, Lagrange equation                                             | constraints, Lagrange equation,. Hamilton's                                             |
|                              | from D'Alemberts Principle, Velocity dependent                                                   | principle, Derivation of Lagrange's equation from                                       |
| Teaching hours per           | potentials and dissipation function. Importance and                                              | Hamilton's Principle. Symmetry and conservation                                         |
| week: 4<br>No. of Credits: 4 | simple applications of Lagrangian formulation.<br>Hamilton's principle, Derivation of Lagrange's | laws: momentum conservation, cyclic co ordinates,                                       |
| No. of Cleans. 4             | equation from Hamilton's Principle. Symmetry and                                                 | angular momentum conservation and conservation of energy.                               |
|                              | conservation laws: momentum conservation, cyclic co-                                             |                                                                                         |
|                              | ordinates, angular momentum conservation and                                                     | Motion in central force field: Equivalent one body                                      |
|                              | conservation of energy.                                                                          | problem, motion in central force field, Equation of                                     |
|                              | 12 Hours                                                                                         | orbit. Elliptic orbits, hyperbolic orbits and parabolic                                 |
|                              |                                                                                                  | orbits. Elastic scattering in central force field,<br>Rutherford scattering. Problems   |
|                              |                                                                                                  | 12 hours                                                                                |
|                              |                                                                                                  |                                                                                         |
|                              | Unit II                                                                                          | Unit II                                                                                 |
|                              | Motion in central force field: Equivalent one body                                               | Motion of Rigid body: Fixed and moving co ordinate                                      |
|                              | problem, motion in central force field, general features                                         | systems. Coriolis force, Coriolis force acting on falling                               |
|                              | of motion, Equations of motion and first integrals.                                              | body Euler theorem. Euler angle, angular momentum                                       |
|                              | Motion in inverse square law of force field. Equation of                                         | and kinetic energy of a rigid body. Inertia tensor,                                     |

| orbit. Elliptic orbits, hyperbolic orbits & parabolic<br>orbits. Elastic scattering in central force field,<br>laboratory and centre of mass co-ordinate systems.<br>Rutherford scattering.<br>12 Hours                                                                                                                                                | Euler's equations of motion. Torque free motion.<br>Motion of symmetric top – Nutational motion,<br>Problems.<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                               | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Motion of Rigid body: Fixed and moving co-ordinate<br>systems. Coriolis force, Coriolis force acting on falling<br>body Euler theorem. Euler angle, angular momentum<br>and kinetic energy of a rigid body. Inertia tensor,<br>Euler's equations of motion. Torque free motion.<br>Motion of symmetric top – Nutational motion.<br>12 Hours            | <ul> <li>Hamiltonian Mechanics and Brackets: Legendre transformation and Hamilton equations of motion: conservation theorem and physical significance of Hamiltonian. Derivation of Hamilton's equation from a variation principle: principle of least action.</li> <li>Lagrange and Poisson brackets, Equation of motion in Poisson bracket notation.</li> <li>Hamilton Jacobi Theory: Hamilton Jacobi equation of motion for Hamilton's principle and characteristic functions, Harmonic oscillator problem</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                        | as example of Hamilton Jacobi method. Problems<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit IV                                                                                                                                                                                                                                                                                                                                                | <mark>Unit IV (Newly Added)</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hamiltonian Mechanics and Brackets: Legendre<br>transformation and Hamilton equations of motion:<br>conservation theorem and physical significance of<br>Hamiltonian. Derivation of Hamilton's equation from a<br>variation principle: principle of least action. Lagrange<br>and Poisson brackets, Equation of motion in Poisson<br>bracket notation. | <b>Rocket Dynamics:</b> Introduction equation of motion<br>for variable mass – performance of single stagerocket;<br>exhaust velocity, structure factor and mass ratio.<br>Exhaust speed parameter, effect of gravity; expression<br>for height attained by single stage rocket, performance<br>of single stage rocket optimization of multi stage<br>rocket Launch site selection problems                                                                                                                              |

| of motio<br>functions                                                                     | <b>n-Jacobi Theory:</b> Hamilton-Jacobi equation<br>on for Hamilton's principle and characteristic<br>s, Harmonic oscillator problem as example of<br>n-Jacobi method.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                         |                            | 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Boo                                                                                  | oks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Text B                     | ooks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P<br>2. Ir<br>T                                                                           | Classical Mechanics: H. Goldstein, Narosa<br>ublishing Pvt. Ltd. (1998)<br>ntroduction to Classical Mechanics: R. G.<br>Cakwale & P. S. PuranikTata McGraw Hill,<br>New Delhi (1997)                                                                                                                                                                                                                                                                                                                                                                                       | 2.                         | Classical Mechanics: H.Goldstein, Narosa<br>Publishing Pvt. Ltd. (1998).<br>Introduction to Classical Mechanics: R. G.<br>Takwale& P. S. Puranik. Tata McGraw Hill,<br>New Delhi (1997).                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reference                                                                                 | ce Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refere                     | nce Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| J.<br>A<br>2. C<br>T<br>3. C<br>B<br>4. C<br>B<br>4. C<br>B<br>I<br>r<br>5. C<br>H<br>(2) | <ul> <li>Classical Mechanics: H. Goldstein, C. Poole &amp;<br/>Safko. Third Edition. Pearson Education<br/>Asia (2002).</li> <li>Classical Mechanics: N. C. Rana and P. S. Joag,<br/>Tata McGraw Hill, New Delhi (1991).</li> <li>Classical Dynamics of Particles and Systems: J.</li> <li>C. Marion, Academic Press (1964).</li> <li>Classical Mechanics of Particles and Rigid<br/>Bodies: Kiran. C. Gupta, - New Age.<br/>International (1998).</li> <li>Classical Mechanics: Dr. J. C. Upadhyaya,<br/>Iimalaya Publishing House, Revised Edition<br/>2009).</li> </ul> | 2.<br>3.<br>4.<br>5.<br>6. | Classical Mechanics: H.Goldstein, C.Poole &<br>J.Safko. Third Edition. Pearson Education Asia<br>(2002).<br>Classical Mechanics: N. C. Rana and P. S.<br>Joag, Tata McGraw Hill, New Delhi (1991).<br>Classical Dynamics of Particles and Systems:<br>J. B. Marion, Academic Press (1964).<br>Classical Mechanics of Particles and Rigid<br>Bodies: Kiran. C. Gupta, New Age<br>International (1998).<br>Classical Mechanics: Dr. J. C. Upadhyaya,<br>Himalaya Publishing House, Revised Edition<br>(2009.<br>Classical mechanics: K. Sankara Rao, P. H. E<br>Learning Private Limited (2008) |
| PG85T103<br>(Course                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit I                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| PHCT1.3):<br>Electronics<br>(General)<br>Teaching hours per<br>week: 04<br>No. of credits: 4 | Unit I<br>Operational amplifier – Ideal op-amp, equivalent<br>circuit of op-amp, open loop op-amp configurations –<br>inverting, non-inverting and differential amplifiers, op-<br>amp with negative feedback, feedback configurations -<br>voltage series feedback amplifier, voltage shunt<br>feedback amplifier, and differential amplifier.<br>Summing, scaling and averaging amplifier,<br>instrumentation amplifier, Integrator and differentiator<br>12 Hours                                                                                                                                                                                                                                              | <b>Operational amplifier:</b> Introduction to Op Amp,<br>Basic op amp circuit, 741 IC Op-Amp, open loop op-<br>amp configurations – inverting, non inverting and<br>differential amplifiers, feedback configurations,<br>voltage follower, non inverting amplifier, Inverting<br>amplifier, Op-Amp parameters Input output voltages,<br>common mode rejection ratio, slew rate and frequency<br>limitations. Summing, difference, scaling and<br>averaging amplifier. DC and AC Voltmeter,<br>instrumentation amplifier, Integrator and<br>differentiator, Differentiator and Integrator design and<br>performance, Precision half wave and full wave<br>rectifier, Clipper and Clamping circuits, Peak detector, |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample and hold Circuit. 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                              | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                              | <b>Op-amp applications and specialized ICs</b> : Active filters – types, first and second order active low and high pass filter. Oscillators – basic principles, types, phase shift oscillator, Wien bridge oscillator, triangular wave generator. Comparators and converters – basic comparator, zero crossing detector, Schmitt trigger, window detector. Analog-to-digital converters and digital-to-analog converters, Clippers and clampers (positive and negative), peak detector, sample and hold circuit. Timer IC555 applications, monostable and astable multivibrator, voltage to frequency converter and frequency to voltage converter, phase locked loop, voltage regulator (fixed and adjustable). | <b>Op-amp applications and specialized ICs:</b> Active filters – types, All pass phase shifting circuits, first and second order active low and high pass filter. Band pass filter, band stop filter. Oscillators – basic principles, phase shift oscillator, Wein bridge oscillator, triangular and rectangular wave generator. Comparators and converters – basic comparator, zero crossing detector, Inverting and non inverting Schmitt trigger, Astable and monostable multivibrator. Precision voltage regulator (fixed and adjustable). IC 565 Phase locked loop, characteristics, Frequency multiplier, AM and FM demodulator. 12 hours                                                                   |

| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Optical fiber communications</b> : Historical development, the general system, advantages of OFC, optical fiber wave guide, ray theory transmission, total internal reflection, acceptance angle, numerical aperture, skew rays, optical fibers and cables, preparation of optical fibers, liquid phase (melting) techniques, multimode step index fibers, graded index fibers, single mode fibers, plastic clad fibers, optical fiber connectors, fiber alignment and joint loss, fiber splices, light sources for OFC – LED and laser, detectors – p-n, p-i-n and avalanche photodiodes.<br>12 Hours | <b>Optical fiber communications:</b> Introduction, optical fiber wave guide, ray theory transmission total internal reflection, acceptance angle, numerical aperture, skew rays, Electromagnetic mode theory, Modes in planar guide, Phase and group velocity, Types of fibers, step index fiber, graded index fiber, single mode fiber, mode field diameter and spot size, effective refractive index, photonic bandgap fibers. Intrinsic and extrinsic absorption losses, Rayleigh scattering, fiber bend loss, material dispersion and scattering effects. Preparation of optical fibers, liquid phase (melting) techniques, Plasma activated chemical vapor deposition. Structure and characteristics of multimode step index fibers, graded index fibers, single mode fibers and plastic clad fibers, optical fiber connectors, fiber alignment and joint loss, fiber splices. Light sources for OFC, LED and laser diodes, detectors p-n, p-i-n and avalanche photodiodes. |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Digital Electronics:</b> Boolean operations and expressions, Boolean analysis of logic gates, simplification of Boolean expression. Karnaugh map: two, three and four variable map                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Digital Electronics:</b> Boolean operations and expressions, Boolean analysis of logic gates, simplification of Boolean expression. Karnaugh map: two, three and four variable map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Digital logic gates</b> : AND, OR, NAND and NOR gates, AND-OR and NAND-NOR implementation of Boolean Expressions. Logic gate operation with pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Digital logic gates:</b> AND, OR, NAND and NOR gates, AND-OR and NAND-NOR implementation of Boolean Expressions. Logic gate operation with pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| waveforms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | waveforms.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Combinational Logic circuits</b> : Adder, parallel binary adder, subtractor, comparators, decoders, BCD to seven segment decoder, encoders, code conversion, multiplexers, demultiplexers, parity generators and checkers.                                                                                                                                                                                                                                                                                     | <b>Combinational Logic circuits:</b> Adder, parallel binary adder, subtractor, parity generators and checkers, comparators, decoders, BCD to seven segment decoder, encoders, code conversion, multiplexers, demultiplexers.                                                                                                                                                                                                                              |
| Sequential circuits: Latches, Flip-flops, SR, JK,<br>Master-Slave JK, D, T flip-flops, counters,<br>synchronous and asynchronous counters, ripple<br>counters, registers, shift registers, timing sequences,<br>memory units, random access memory (RAM).<br>A/D and D/A conversion circuits: Introduction,<br>filtering and sampling, quantization, quantization error,<br>flash converter and dual slope converter. Binary<br>weighted converter, R-2R ladder converter,<br>characteristic properties.(Removed) | Sequential circuits: Latches, flip flops, SR, D, JK,<br>Master Slave JK,T flip flops, counters, synchronous<br>and asynchronous counters, ripple counters, mod n<br>counters, mod 3, mod 5 and mod 10 counters,<br>registers, shift registers, timing sequences, memory<br>units, random access memory (RAM).<br>12 hours                                                                                                                                 |
| Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> <li>Op-Amps and linear Integrated Circuits: R.<br/>Gayakwad, PHI publications, New Delhi<br/>(2000).</li> <li>Digital Principles and Applications: A.P.<br/>Malvino and D. Leach, TMH Publications<br/>(1991).</li> <li>Digital fundamentals – 8th edition: Thomas L<br/>Floyd, Pearson Education (2003)</li> </ol>                                                           | <ol> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> <li>Op Amps and linear Integrated Circuits: R.<br/>Gayakwad, PHI publications, New Delhi<br/>(2000).</li> <li>Digital Principles and Applications: A.P.<br/>Malvino and D. Leach, TMH Publications<br/>(1991).</li> <li>Digital fundamentals – 10th Edition: Thomas L<br/>Floyd, Pearson Education (2003).</li> </ol> |

|                                                    | 5. Optical Fiber Communication Principles &<br>Practice, John M. Senior, Prentice Hall<br>International Ltd, London (1992)                                                                                                                                                                                                                                                                                                       | <ol> <li>Optical Fiber Communication Principles &amp;<br/>Practice, John M. Senior, Prentice Hall<br/>International Ltd, London (1992).</li> </ol>                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | <ol> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C. Smith, Oxford University Press<br/>(1991).</li> <li>Digital Computer fundamentals, Thomas C.<br/>Bartee, McGraw Hill Ltd. (1977).</li> <li>Digital Logic and Computer Design: Morris<br/>Mano. Prentice Hall of India Pvt.Ltd New Delhi<br/>(2000).</li> <li>Logic Circuit Design: Alan W. Shaw, Sanders<br/>College Publication Company (1999).</li> </ol> | <ol> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C. Smith, Oxford University Press<br/>(1991).</li> <li>Digital Computer fundamentals, Thomas C.<br/>Bartee, McGraw Hill Ltd. (1977).</li> <li>Digital Logic and Computer Design: Morris<br/>Mano. Prentice Hall of India Pvt.Ltd New<br/>Delhi (2000).</li> <li>Logic Circuit Design: Alan W. Shaw, Sanders<br/>College Publication Company (1999).</li> </ol> |
| PG85T104                                           | Conege I doncation Company (1999).                                                                                                                                                                                                                                                                                                                                                                                               | Conege I doncation Company (1999).                                                                                                                                                                                                                                                                                                                                                                                               |
| (Course PHCT                                       | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.4): Condensed                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Matter Physics<br>(General)                        | <b>Crystal structure:</b> Lattice translational vectors and lattices, basis and crystal structure, primitive and non-                                                                                                                                                                                                                                                                                                            | <b>Crystal structure:</b> Lattice translational vectors and lattices, basis and crystal structure, primitive and non                                                                                                                                                                                                                                                                                                             |
| (General)                                          | primitive cells, fundamental types of lattices, Miller                                                                                                                                                                                                                                                                                                                                                                           | primitive cells, fundamental types of lattices, Miller                                                                                                                                                                                                                                                                                                                                                                           |
| Teaching hours per<br>week: 4<br>No of credits : 4 | indices. Symmetry elements, point groups and space<br>groups. Examples of simple crystal structures.<br><b>Crystal diffraction and reciprocal lattice:</b> Bragg law,                                                                                                                                                                                                                                                            | indices. Symmetry elements, point groups and space<br>groups. Examples of simple crystal structures.                                                                                                                                                                                                                                                                                                                             |
|                                                    | reciprocal lattice vectors, diffraction conditions, Laue<br>equations, Brillouin zones. Atomic form factor,<br>structure factor and its calculations in simple cases.                                                                                                                                                                                                                                                            | <b>Crystal diffraction and reciprocal lattice:</b> Bragg law, reciprocal lattice vectors, diffraction conditions, Laue equations, Brillouin zones. Atomic form factor,                                                                                                                                                                                                                                                           |
|                                                    | Experimental methods.                                                                                                                                                                                                                                                                                                                                                                                                            | structure factor and its calculations in simple cases.                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                         | Experimental methods of X-ray diffraction, details of powder X ray diffraction of crystal structure                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  | determination. (Newly Added)                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Unit II                                                                                                                                                                                                                                                          | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Crystal binding:</b> Crystals of inert gases: Van der Waals-London interaction, repulsive interaction, cohesive energy, compressibility and bulk modulus.                                                                                                     | <b>Crystal binding:</b> Crystals of inert gases: Van der Waals London interaction, repulsive interaction, cohesive energy, compressibility and bulk modulus.                                                                                                                                                                                                                                                                 |
| <b>Ionic Crystals:</b> Madelung-energy, Born-Mayer Model, evaluation of Madelung constant for an infinite line of ions. Binding in covalent, metal and hydrogen-bonded crystals.                                                                                 | <b>Ionic Crystals:</b> Madelung energy, Born Mayer Model, evaluation of Madelung constant for an infinite line of ions. The nature of binding in covalent, metal and hydrogen bonded crystals.                                                                                                                                                                                                                               |
| Lattice vibrations and thermal properties:<br>Vibrations of one-dimensional monatomic and<br>diatomic lattices, properties of lattice waves, phonons.<br>Einstein and Debye models of lattice heat capacity.<br>Lattice thermal conductivity.<br>12 Hours        | Lattice vibrations and thermal properties: Elastic<br>waves, density of states of a continuous medium,<br>Theories of specific heat: Classical, Einstein and<br>Debye models. Vibration of one dimensional<br>monatomic and diatomic lattices, properties of lattice<br>waves, phonons. Lattice thermal conductivity.<br>12 Hours                                                                                            |
| Unit III                                                                                                                                                                                                                                                         | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Free electron model of metals:</b> Free electron Fermi gas in three dimensions, Fermi surface. fermi-Dirac distribution. Heat capacity of electron gas. Electrical conductivity and Ohm's law, Mattheissen's rule. Thermal conductivity, Wiedemann Franz law. | <b>Free electron model of metals:</b> Free electron gas and formulation of free electron theory of metals, electrical conductivity and origin of collision time, electrical conductivity versus temperature, Mattheissen's rule. Heat capacity of free electrons, Fermi Dirac distribution, the concept of Fermi surface, the effect of Fermi surface on electrical conductivity. Thermal conductivity: Wiedemann Franz law. |
| Energy bands in solids: Origin and magnitude of energy gap. Bloch functions. Kronig- Penney model.                                                                                                                                                               | Energy bands in solids: Origin and magnitude of energy gap. Bloch functions. Kronig Penney model                                                                                                                                                                                                                                                                                                                             |

| meta                | mber of states in a band. Distinction between<br>tals, insulators and semiconductors. Concept of<br>es. Equation of motion for electrons and holes.<br>ective mass of electrons and holes.<br>12 Hours                      | (qualitative). Number of states in a band. Distinction<br>between metals, insulators and semiconductors.<br>Velocity of the Bloch electron, electron dynamics in<br>an electric field, concept of<br>hole, dynamic effective mass of electrons and holes.<br>12 Hours |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit                | it IV                                                                                                                                                                                                                       | Unit IV                                                                                                                                                                                                                                                               |
| sem<br>cond<br>cond | <b>niconductors:</b> Intrinsic and extrinsic<br>niconductors. Intrinsic and extrinsic carrier<br>centrations, position of Fermi level, electrical<br>ductivity and mobility and their temperature<br>rendence. Hall effect. | <b>Semiconductors:</b> Intrinsic and extrinsic semiconductors. Intrinsic and extrinsic carrier concentrations, position of Fermi level, electrical conductivity and mobility and their temperature dependence. Hall effect in semiconductor.                          |
| idea                | <b>Derconductivity:</b> Experimental survey, qualitative as about BCS theory, high-temperature erconductors.                                                                                                                | <b>Superconductivity:</b> Experimental survey, qualitative ideas about BCS theory, high temperature superconductors and their applications.                                                                                                                           |
| mate<br>law;        | <b>gnetic properties:</b> Classification of magnetic terials, quantum theory of paramagnetism Curie r; Weiss' molecular field theory of ferromagnetism, rie – Weiss law.                                                    | <b>Magnetic properties:</b> Classification of magnetic materials, quantum theory of paramagnetism Curie law; Weiss' molecular field theory of ferromagnetism, Curie – Weiss law.                                                                                      |
|                     | fects in solids: Types of imperfections, Schottky<br>Frenkel defects and their concentrations.<br>12 Hours                                                                                                                  | <b>Defects in solids:</b> Types of imperfections, Schottky and Frenkel defects and their concentrations.<br>12 Hours                                                                                                                                                  |
| Tex                 | xt Books                                                                                                                                                                                                                    | Text Books                                                                                                                                                                                                                                                            |
|                     | <ol> <li>Introduction to Solid State Physics: C.Kittel.<br/>Wiley Eastern Ltd., Bangalore (1976).</li> <li>Elementary Solid State Physics: M.A.</li> </ol>                                                                  | <ol> <li>Introduction to Solid State Physics: C.Kittel.<br/>Wiley Eastern Ltd., Bangalore (1976).</li> <li>Elementary Solid State Physics: M.A.</li> </ol>                                                                                                            |

|                                                                                                                                                             | <ul> <li>Omar.Addison-Wesley Pvt.,Ltd.,New Delhi (1993).</li> <li>3. Solid State Physics: A.J. Dekker, Macmillan India Ltd., Bangalore, (2000).</li> <li>4. Solid State Physics: F.W.Ashcroft &amp; N.D. Mermin. Saunders College Publishing, New York (1976).</li> <li>Reference Books</li> </ul>                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Omar.Addison Wesley Pvt.,Ltd.,New Delhi (1993).</li> <li>3. Solid State Physics: A.J. Dekker, Macmillan India Ltd., Bangalore, (2000).</li> <li>4. Solid State Physics: F.W.Ashcroft &amp; N.D. Mermin. Saunders College Publishing, New York (1976).</li> <li>Reference Books</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                             | <ol> <li>Introduction to Solids: L.V. Azaroff. McGraw-<br/>Hill inc, New york (1960).</li> <li>Solid State and Semiconductor Physics:<br/>J.P.McKelvey. Harper and Row, Newyork<br/>(1966)</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi<br/>(2009)</li> </ol>                                                                                                                                                                                                                                                                                                            | <ol> <li>Introduction to Solids: L.V. Azaroff. McGraw<br/>Hill inc, New york (1960).</li> <li>Solid State and Semiconductor Physics:<br/>J.P.McKelvey. Harper and Row, Newyork<br/>(1966).</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi<br/>(2009).</li> </ol>                                                                                                                                                                                                                                                                                                            |
| PG85P105<br>(Course PHCP<br>1.5): Practical-I:<br>Electronics and<br>Condensed<br>Matter Physics<br>Contact hours per<br>week: 4<br>Number of credits:<br>4 | <ol> <li>Op-Amp 741 as an adder, subtractor,<br/>differentiator and integrator</li> <li>Wien bridge oscillator using Op-Amp 741.</li> <li>Triangular wave generator using op-amp 741.</li> <li>Low-pass, high -pass and band-pass active<br/>filters using Op-Amp 741.</li> <li>Simplification of Boolean expressions and<br/>implementation using 2-input NAND gate<br/>IC7400.</li> <li>Fortran Programming using Fortran 77.</li> <li>Analysis of X-ray diffraction pattern.</li> <li>Thermister characteristics</li> <li>Determination of energy gap of semiconductor<br/>by resistivity measurement (4-probe method).</li> </ol> | <ol> <li>Op-Amp 741 as an adder, subtractor,<br/>differentiator and integrator.</li> <li>Wien bridge oscillator using Op-Amp 741.</li> <li>Triangular wave generator using op-amp 741.</li> <li>Low pass, high –pass and band pass active<br/>filters using Op Amp 741.</li> <li>Simplification of Boolean expressions and<br/>implementation using 2 input NAND gate<br/>IC7400.</li> <li>Fortran Programming using Fortran 77.</li> <li>Analysis of X ray diffraction pattern.</li> <li>Thermister characteristics</li> <li>Determination of energy gap of semiconductor<br/>by resistivity measurement (4 probe method).</li> </ol> |

|                                                 | <ul> <li>10. Developing of X - ray pattern for a given substance using X – ray diffractometer and determination interplanar spacing.</li> <li>11. Structure factor calculation of simple crystal structures.</li> <li>(New experiments may be added)</li> <li>References</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>10. Developing of X - ray pattern for a given substance using X – ray diffractometer and determination interplanar spacing.</li> <li>11. Structure factor calculation of simple crystal structures.</li> <li>(New experiments may be added)</li> <li>References</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | <ol> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C.Smith, Oxford University Press<br/>(1991).</li> <li>Electronic devices and circuits: R.Boylstead<br/>and Nashalsky : PHI publications (1999).</li> <li>Electronics Principles: A.P. Malvino, TMH<br/>Publications (1984).</li> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> <li>Op-Amps and Linear Integrated Circuits: R.<br/>Gayakwad, PHI publications, New Delhi<br/>(2000).</li> <li>Elementary Solid State Physics: M.A.Omar,<br/>Addison Wisley Pub.Ltd. New Delhi (1993).</li> <li>X-ray Diffraction: B.D. Cullity, Addison-<br/>Wisley Ltd. New York (1972).</li> <li>Introduction to Solid State Physics: C. Kittel,<br/>Wiley Eastern Ltd. Bangalore (1976).</li> <li>Laboratory Manuals</li> </ol> | <ol> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C.Smith, Oxford University Press<br/>(1991).</li> <li>Electronic devices and circuits: R.Boylstead<br/>and Nashalsky: PHI publications (1999).</li> <li>Electronics Principles: A.P. Malvino, TMH<br/>Publications (1984).</li> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> <li>Op-Amps and Linear Integrated Circuits: R.<br/>Gayakwad, PHI publications, New Delhi<br/>(2000).</li> <li>Elementary Solid State Physics: M.A.Omar,<br/>Addison Wisley Pub.Ltd. New Delhi (1993).</li> <li>X ray Diffraction: B.D. Cullity, Addison<br/>Wisley Ltd. New York (1972).</li> <li>Introduction to Solid State Physics: C. Kittel,<br/>Wiley Eastern Ltd. Bangalore (1976).</li> <li>Laboratory Manuals</li> </ol> |
| PG85P106<br>(Course PHCP<br>1.6): Practical-II: | 1. Study of Interference and Diffraction by means of He-Ne laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Study of Interference and Diffraction by means<br/>of He-Ne laser.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| f e/m  | Determination of ionization potentials in at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.                                                     | 2. Study of Zeeman Effect: Determination of e/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Atomic &                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|        | by the Franck-Hertz experiment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | for an electron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Molecular               |
|        | Study of Zeeman Effect: Determination of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.                                                     | 3. Study of dispersion of a Grating Spectrograph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Physics and             |
| aph.   | for an electron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 4. Spectroscopy Assignments in Computer Lab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nuclear &               |
|        | Study of dispersion of a Grating Spectrogra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.                                                     | 5. Study of the performance of G.M. Counter and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Particle Physics</b> |
| ab.    | Spectroscopy Assignments in Computer La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.                                                     | Proportional counter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (General)               |
| r and  | Study of the performance of G.M. Counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.                                                     | 6. Study of the performance of Scintillation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ````                    |
|        | Proportional counter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | detector and scintillation spectrometers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact hours per       |
| ation  | Study of the performance of Scintilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.                                                     | 7. Study of the random nature of radioactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | week: 4                 |
|        | detector and scintillation spectrometers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of               |
| ictive | Study of the random nature of radioad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.                                                     | 8. Study of the absorption of beta particles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | credits:4               |
|        | decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | Study of the absorption of beta particles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.                                                     | (New experiments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | (New experiments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | ences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer                                                  | eferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| •.• 、  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.                                                     | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Co.    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| (61    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| sners  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| Ma     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| ,      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| Carpin |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| A.C.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 6. Experiments in Modern Physics: A.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 11.0.  | Melissions academic press (NY)(1966).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                     | Melissions academic press (NY)(1966).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|        | Experiments in Nuclear Science, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                      | 7. Experiments in Nuclear Science, ORTEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| TEC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /.                                                     | 7. Experimento in ruelea belence, ORIEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|        | detector and scintillation spectrometers.<br>Study of the random nature of radioa<br>decay.<br>Study of the absorption of beta particles.<br><i>(New experiments may be added)</i><br>ences<br>Advanced Practical physics: (9th Ed<br>B.C.Worsnop & H.T. Flint Methuen &<br>Ltd. London (1951).<br>Instrumental Methods of Analysis :<br>Edition) H.H. Willard, L.L.Merrit, J.A.<br>& F.A. Settle, J.K. Jain for CBS Publi<br>(1986).<br>Optics (2nd Edition) A.K. Gathak Tata<br>Graw Hill Pub. Comp.Ltd New Delhi (1977)<br>Experimental Spectroscopy (3rd ed): H<br>A.Sawyer, Dover Pub, N.Y. (1950).<br>Lab Manuals/Books/Charts. | 8.<br>9.<br><b>Refer</b><br>1.<br>2.<br>3.<br>4.<br>5. | <ul> <li>decay.</li> <li>8. Study of the absorption of beta particles.<br/><i>(New experiments may be added)</i></li> <li>eferences <ol> <li>Advanced Practical physics: (9th Edition)<br/>B.C.Worsnop &amp; H.T. Flint Methuen &amp; Co. Ltd.<br/>London (1951).</li> <li>Instrumental Methods of Analysis : (6th<br/>Edition) H.H. Willard, L.L.Merrit, J.A. Dean &amp;<br/>F.A. Settle, J.K. Jain for CBS Publishers<br/>(1986).</li> <li>Optics (2nd Edition) A.K. Gathak Tata Mc<br/>Graw Hill Pub. Comp.Ltd New Delhi (1977).</li> <li>Experimental Spectroscopy (3rd ed): Ralph<br/>A.Sawyer, Dover Pub, N.Y. (1950).</li> <li>Lab Manuals/Books/Charts.</li> </ol> </li> </ul> | Number of               |

|                                                    | <ul> <li>in Nuclear Physics Laboratory).</li> <li>8. Practical Nucleonics: F.J.Pearson., and R.R. Dsborne, E7 F.N. Spon Ltd(1960).</li> <li>9. The Atomic Nucleus: R.D. Evans, Tata McGraw Hill Pub.comp.Ltd(1960).</li> <li>10. Nuclear Radiation Detectors: S.S.Kapoor and</li> </ul>                                                                                                     | <ul> <li>in Nuclear Physics Laboratory).</li> <li>8. Practical Nucleonics: F.J.Pearson., and R.R. Dsborne, E7 F.N. Spon Ltd(1960).</li> <li>9. The Atomic Nucleus: R.D. Evans, Tata McGraw Hill Pub.comp.Ltd(1960).</li> <li>10. Nuclear Radiation Detectors: S.S.Kapoor and</li> </ul>                                                                                                     |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | V.S. Ramamurthy, Wiley Eastern Limited                                                                                                                                                                                                                                                                                                                                                      | V.S. Ramamurthy, Wiley Eastern Limited                                                                                                                                                                                                                                                                                                                                                      |
|                                                    | (1986).                                                                                                                                                                                                                                                                                                                                                                                     | (1986).                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                    | 11. Experimental Nucleonics: E. Bleuler and G.J.                                                                                                                                                                                                                                                                                                                                            | 11. Experimental Nucleonics: E. Bleuler and G.J.                                                                                                                                                                                                                                                                                                                                            |
|                                                    | Goldsmith, Rinehart & Co. Inc. (NY). (1958).<br>Semester – II                                                                                                                                                                                                                                                                                                                               | Goldsmith, Rinehart & Co. Inc. (NY). (1958).<br>Semester – II                                                                                                                                                                                                                                                                                                                               |
| PG85T201                                           |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             |
| (Course PHCT                                       | Unit I                                                                                                                                                                                                                                                                                                                                                                                      | Unit I                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.1): Quantum                                      |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             |
| Mechanics – I                                      | <b>Basic Principles:</b> Hermitian operators, observables;                                                                                                                                                                                                                                                                                                                                  | <b>Basic Principles:</b> Hermitian operators, observables;                                                                                                                                                                                                                                                                                                                                  |
| Teaching hours per<br>week: 4<br>No. of Credits: 4 | Eigenfunctions, eigenvalues and orthonormalization of<br>eigenfunctions, completeness. State functions as<br>probability amplitude and the principle of<br>superposition. Momentum, Hamiltonian and energy<br>operators, Schrodinger equation. Probability density<br>and probability current density, expectation value,<br>Ehrenfest's theorem; basic postulates of quantum<br>mechanics. | Eigenfunctions, eigenvalues and orthonormalization of<br>eigenfunctions, completeness. State functions as<br>probability amplitude and the principle of<br>superposition. Momentum, Hamiltonian and energy<br>operators, Schrodinger equation. Probability density<br>and probability current density, expectation value,<br>Ehrenfest's theorem; basic postulates of quantum<br>mechanics. |
|                                                    | <b>Simple Applications:</b> Eigenvalues and eigenfunctions of free particle, particle in infinite square well and of simple harmonic oscillator by polynomial method, barrier transmission: leakage of free particle through a thick rectangular potential barrier, transmission and reflection coefficients. 12 Hours                                                                      | <b>Simple Applications:</b> Eigenvalues and eigenfunctions of free particle, particle in infinite square well and of simple harmonic oscillator by polynomial method, barrier transmission: leakage of free particle through a thick rectangular potential barrier and transmission and reflection coefficients.                                                                            |
|                                                    | Unit II                                                                                                                                                                                                                                                                                                                                                                                     | Unit II                                                                                                                                                                                                                                                                                                                                                                                     |

| <b>Hydrogen atom:</b> Particle in spherically symmetric potential, Reduction of two-body problem to a single particle problem. Center-of-mass and relative motions; eigenvalues and eigenfunctions. Hydrogen-like atom, eigenvalues of energy and eigenfunctions,                                                                                                      | <b>Hydrogen atom:</b> Particle in spherically symmetric potential, Reduction of two body problem to a single particle problem. Center of mass and relative motions; eigenvalues and eigenfunctions. Hydrogen like atom, eigenvalues of energy and eigenfunctions.                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Angular momentum: expression for the three<br>Cartesian components and the square of the angular<br>momentum, their commutation relations, expression for<br>the operators in polar coordinates, eigenvalues and<br>eigenfunctions in terms of polar coordinates;<br>eigenvalues and eigenfunctions of the square and z-<br>component of angular momentum.<br>12 Hours | Angular momentum: The expression for the three<br>Cartesian components and the square of the<br>angular momentum, their commutation relations,<br>expression for the operators in polar coordinates,<br>eigenvalues and eigenfunctions in terms of polar<br>coordinates; eigenvalues and eigenfunctions of the<br>square and z component of angular momentum.<br>12 hours                           |
| Unit III                                                                                                                                                                                                                                                                                                                                                               | Unit III                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Time-Independent Perturbation Theory:</b> Eigenvalue of energy and eigenfunction in the first-order approximation (the case of a system with non-degenerate energy levels). Application to anharmonic oscillator and to the ground state of Helium atom.                                                                                                            | <b>Time Independent Perturbation Theory:</b><br>Eigenvalue of energy and eigenfunction in the first<br>order approximation (the case of a system with non<br>degenerate energy levels). Application to anharmonic<br>oscillator and to the ground state of Helium atom.                                                                                                                             |
| <b>Time-Dependent Perturbation Theory:</b> Transition<br>from one discrete level to the other, to a continuum,<br>another discrete level through an inter-harmonic<br>perturbation, to resonance transitions. Interaction of<br>radiations with a system of atoms, transition dipole<br>moment, selection rules, Einstein's A & B coefficients.<br>12 Hours            | <b>Time Dependent Perturbation Theory:</b> Concept of<br>the theory, transition from one discrete level to the<br>other, to a continuum states: Fermi's Golden rule. The<br>harmonic perturbation, resonance transitions. Semi<br>classical theory of Einstein's A & B coefficients.<br>Interaction of radiations with a system of atoms,<br>transition dipole moment, selection rules.<br>12 hours |

| U                     | Jnit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p<br>p<br>e<br>c<br>t | <b>Elastic Scattering:</b> Differential and total cross-section,<br>whase analysis. Significance of the partial waves and<br>whase shifts, S-wave scattering from a square well<br>botential. The Born approximation, derivation of the<br>expression for differential scattering cross-section,<br>condition for validity of the approximation: application<br>o square well potential and screened coulomb<br>botential.<br>12 Hours                              | <b>Elastic Scattering:</b> Differential and total cross section, phase analysis. Significance of the partial waves and phase shifts, S wave scattering from a square well potential. The Born approximation, derivation of the expression for differential scattering cross section, condition for validity of the approximation: application to square well potential and screened coulomb potential.<br>12 hours                                                      |
| r                     | <b>Fext Books</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | <ol> <li>Quantum Mechanics – Theory &amp; Applications<br/>(3rd Ed): A.K. Ghatak &amp; S. Loknathan,<br/>MacMillan India Ltd. 91984)</li> <li>A Text of Quantum Mechanics: P.M. Mathews<br/>&amp;K. Venkatesan, Tata McGraw-Hill, New<br/>Delhi (1982)</li> <li>Quantum Mechanics (2nd ed): G. Aruldhas,<br/>Prentice-Hall India Pvt.Ltd.,New Delhi (2009)</li> <li>Quantum Physics (3rd ed): S. Gasiorowicz,<br/>Wiley India (P) Ltd., New Delhi (2007)</li> </ol> | <ol> <li>Quantum Mechanics – Theory &amp; Applications<br/>(3rd Ed): A.K. Ghatak &amp; S. Loknathan,<br/>MacMillan India Ltd. 91984).</li> <li>A Text of Quantum Mechanics: P.M. Mathews<br/>&amp;K. Venkatesan, Tata McGraw Hill, New<br/>Delhi (1982).</li> <li>Quantum Mechanics (2nd ed): G. Aruldhas,<br/>Prentice Hall India Pvt.Ltd.,New Delhi (2009).</li> <li>Quantum Physics (3rd ed): S. Gasiorowicz,<br/>Wiley India (P) Ltd., New Delhi (2007).</li> </ol> |
| ŀ                     | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | <ol> <li>Introduction to Quantum Mechanics: L. Pauling<br/>&amp; E. Bright Wilson, McGraw-Hill, N.Y.(1935)</li> <li>Quantum Mechanics(3rd ed): L.I. Schiff,</li> </ol>                                                                                                                                                                                                                                                                                              | <ol> <li>Introduction to Quantum Mechanics: L.<br/>Pauling &amp; E. Bright Wilson, McGraw Hill,<br/>N.Y.(1935).</li> </ol>                                                                                                                                                                                                                                                                                                                                              |
|                       | <ul><li>McGraw-Hill, N.Y.(1968)</li><li>3. Quantum Mechanics: E. Merzbacher, 2nd ed.,<br/>Wiley, N.Y.(1970)</li></ul>                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Quantum Mechanics(3rd ed): L.I. Schiff,<br/>McGraw Hill, N.Y.(1968).</li> <li>Quantum Mechanics: E. Merzbacher, 2nd ed.,</li> </ol>                                                                                                                                                                                                                                                                                                                            |

|                                                    | 4. Quantum Mechanics (2nd Ed): V.K.<br>Thankappan, new Age International (P) Ltd.<br>(1993)                                                                                                                                                                                                                                                                                | Wiley, N.Y.(1970).<br>4. Quantum Mechanics (2nd Ed): V.K.<br>Thankappan, new Age International (P)<br>Ltd.(1993).                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T202<br>(Course PHCT<br>2.2): Atomic &         | Unit I                                                                                                                                                                                                                                                                                                                                                                     | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Molecular<br>Physics (General)                     | Atomic Physics<br>Overview of salient features of atomic spectra.<br>Determination of spectral terms; derivation of                                                                                                                                                                                                                                                        | Atomic spectra and structure: Overview of the salient features of optical spectra due to alkalis, Boron group and IIA and IIB group of elements (as in                                                                                                                                                                                                                                                                                                                                                                                             |
| Teaching hours per<br>week: 4<br>No. of Credits: 4 | interaction energies for two-valence electrons in LS<br>and jj coupling schemes. Zeeman Effect(qualitative).<br>Shape and width of spectral lines: mechanisms;<br>Natural, Doppler, Collision, homogeneous,<br>inhomogeneous broadenings.<br>12 Hours                                                                                                                      | Periodic Table). Spin orbit interaction due to single<br>valence electron atoms and its doublet spectra. Vector<br>model for two valence electron atoms: Determination<br>of spectral terms (singlets, doublets, triplets, etc);<br>derivation of interaction energies in LS and jj<br>couplingschemes; the Lande interval rule; singlet and<br>triplet splitting. Normal and anomalous Zeeman Effect<br>of singlets and doublet states(qualitative). Stark effect<br>in hydrogen (qualitative).<br>12 Hours                                       |
|                                                    | Unit II                                                                                                                                                                                                                                                                                                                                                                    | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                    | Models for Diatomics and their Spectra<br>Molecular spectral features: IR and Raman spectra;<br>classical theory and quantum picture of Raman<br>scattering. Energy levels, selection rules, Eigen<br>functions, IR and Raman spectra of the diatomic<br>molecule as a rigid and non-rigid rotator; harmonic,<br>and anharmonic oscillator; vibrating rotator.<br>12 Hours | Laser Physics: Laser principles: Einstein coefficients,<br>optical pumping, population inversion, the threshold<br>condition- the Schawlow Townes condition for laser<br>oscillations. Three level and four level laser systems.<br>The Ruby laser and He Ne Laser: energy level<br>diagrams, excitation mechanism, construction and<br>working. Shape and width of spectral lines:<br>mechanisms; Natural, Doppler, Collision/pressure and<br>Stark broadenings. Laser cooling: basic concepts,<br>trapping techniques of neutral atoms, the Bose |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Einstein condensation. Atom lasers: basic ideas with illustrations.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Electronic Bands and Transitions:</b> Born-<br>Oppenheimer approximation. Vibrational structure of<br>electronic bands: Vibrational coarse structure;<br>Deslandres' table; Intensity of vibration-electronic<br>spectra: the Franck-Condon principle; vibrational<br>analysis. Dissociation energy. Rotational fine structure<br>of electronic-vibration transitions; P,Q,R branches ; the<br>Fortrat diagram; band head formation; combination<br>relations; evaluation of rotational constants.<br>12 Hours | <b>Diatomic rotational spectra and structure:</b> General features of observed spectra of typical diatomic molecules in Far IR(microwave) and due to Raman scattering; empirical series for the observed wave numbers in both IR and Raman spectra. Diatomic molecule as rigid and non rigid rotator models: energy levels, eigenfunctions, selection rules, IR spectra and correlation with empirical series and illustrations. Raman scattering and spectra due to the rigid and non rigid rotator: energy levels, eigenfunctions, selection with empirical series and illustrations and spectra and correlation with empirical series and illustrations. Spectra and correlation with empirical series and illustrations. Illustrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Laser Physics         Laser principles: Basic principle, Einstein coefficients, the threshold condition – the Schawlow-Townes condition for laser oscillations. Three-level and four-level laser systems; the Ruby laser and He-Ne Laser; their Energy level diagrams, construction, working; and applications.     </li> <li>Fiber Optics: Types of fibers – Single mode and multimode with different refractive index profiles (qualitative). Ray theory transmission – Total Internal</li> </ul>      | <b>Diatomic vibrational spectra and structure:</b> General features of observed spectra of typical diatomic molecules in Near IR and due to Raman scattering; empirical series for the observed wave numbers in both IR and Raman spectra. Diatomic molecule as Harmonic and Anharmonic oscillator models: energy levels, eigenfunctions, selection rules, IR spectra and correlation with empirical series and illustrations. Raman scattering and spectra due to Harmonic and Anharmonic oscillator models: energy levels, eigenfunctions, selection rules, levels, energy levels, e |

|   | eflection, Acceptance Angle, Numerical Aperture.<br>pplications of optical fibers (qualitative) (Removed)<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with empirical series and illustrations. The vibrating<br>rotator model: energy levels, selection rules, IR and<br>Raman spectra, IR fine structure spectrum of a rotation<br>vibration band<br>and correlation with empirical series.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т | ext Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | <ol> <li>Introduction to Atomic Spectra : H.E. White,<br/>McGraw – Hill, Tokyo (1934)</li> <li>Molecular Spectra &amp; Molecular Structure(Vol-<br/>I; 2nd ed): G.Herzberg, D. Van Nostrand Inc.<br/>N.Y. (1950)</li> <li>Spectroscopy (Vol. 3):S. Walker &amp; B. P.<br/>Strauhghan, Chapman &amp; Hall, London (1976)</li> <li>Fundamentals of Molecular Spectroscopy : C.<br/>N. Banwell and E.M. McCash, Tata Mc Graw-<br/>Hill Co., (4th revd edn; 9th reprint, 2000)</li> <li>Lasers and Non-Linear Optics : B. B. Laud,<br/>Wiley Eastern Ltd., New Delhi (1991).</li> <li>Optical Fiber &amp; Communications - Principles &amp;<br/>Practice : John M. Senior, Prentice Hall Intl.<br/>Ltd. London (1992)</li> </ol> | <ol> <li>Introduction to Atomic Spectra : H.E. White,<br/>McGraw – Hill, Tokyo (1934)[Free soft copy<br/>available on Net].</li> <li>Atomic Spectra: H.G.Kuhn, Longmans, Green<br/>&amp; Co.Ltd, London &amp; Harlow (1962) [Free soft<br/>copy available on Net].</li> <li>Molecular Spectra &amp; Molecular Structure(Vol<br/>I; 2nd ed): G.Herzberg, D. Van Nostrand Inc.<br/>N.Y. (1950) [Free soft copy available on Net].</li> <li>Spectroscopy (Vol. 3):S. Walker &amp; B. P.<br/>Strauhghan, Chapman &amp; Hall, London (1976)</li> <li>Fundamentals of Molecular Spectroscopy : C.<br/>N. Banwell and E.M. McCash, Tata Mc Graw-<br/>Hill Co., (4th revd Ed; 9th reprint, 2000)</li> <li>Lasers and Non-Linear Optics : B. B. Laud,<br/>Wiley Eastern Ltd., New Delhi (1991).</li> <li>Laser Fundamentals: William T. Silfvast,<br/>Cambridge Univ Press, 1999.</li> </ol> |
| R | eference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | <ol> <li>Fundamentals of Spectroscopy (2nd ed ): B.<br/>Narayan, Allied Publishers Ltd., New Delhi<br/>(1999).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>Fundamentals of Spectroscopy (2nd ed ): B.<br/>Narayan, Allied Publishers Ltd., New Delhi<br/>(1999).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                                                                          | <ol> <li>Physics of Atoms and Molecules – 2nd Ed.,<br/>Bransden B.H. and Joachain C.J., Pearson<br/>Education, India (2006).</li> <li>Laser Electronics: Joseph T. Verdeyen,<br/>Prentice-Hall of India Pvt. Ltd. New Delhi<br/>(1989).</li> <li>Lasers: Theory &amp; Applications: K. Thyagarajan<br/>&amp; A. Ghatak, MacMillan India, New Delhi<br/>(1981).</li> <li>Fiber Optics Sensors: D. A. Krohn, Instrument<br/>Soc. Am. (1988).</li> <li>Fiber Optic Communication: D. C. Agarwal,<br/>Wheeler Pub. (1993).</li> <li>Modern Spectroscopy (4th Ed): J.M. Hollas,<br/>John Wiley &amp; Sons Ltd. UK 2004.</li> </ol> | <ol> <li>Physics of Atoms and Molecules – 2nd Ed.,<br/>Bransden B.H. and Joachain C.J., Pearson<br/>Education, India (2006).</li> <li>Modern Spectroscopy (4th Ed): J.M. Hollas,<br/>John Wiley &amp; Sons Ltd. UK 2004[Free soft<br/>copy available on Net]</li> <li>Laser Electronics: Joseph T. Verdeyen,<br/>Prentice-Hall of India Pvt. Ltd. New Delhi<br/>(1989).</li> <li>Lasers: Theory &amp; Applications: K.<br/>Thyagarajan &amp; A. Ghatak, MacMillan India,<br/>New Delhi (1981).</li> </ol>                                |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T203<br>(Course PHCT<br>2.3): Nuclear &<br>Particle Physics<br>(General)<br>Teaching hours per<br>week: 4<br>Number of credits:<br>4 | <ul> <li>Unit I</li> <li>Basic Properties: Binding Energy and separation energy. Radius of the nucleus: Scattering of high energy neutrons, x-rays of muonic atoms. The charge distribution in nuclei and charge radius from electron scattering method.</li> <li>Nuclear spin and magnetic Moment: Spin and magnetic moment of odd A nucleus. Experimental determination of magnetic moment by Rabi's atomic beam method.</li> <li>Nuclear Quadrupole moment: Electric quadrupole moment of nucleus (Prolate and Oblate)- qualitative</li> </ul>                                                                             | <ul> <li>Unit I</li> <li>Basic Properties: Binding Energy and separation<br/>energy. Radius of nucleus by scattering of high energy<br/>neutrons, by X rays from muonoic atom and by high<br/>energy electron scattering method.</li> <li>Nuclear spin and magnetic moment: Spin and<br/>magnetic moment of odd A nucleus. Experimental<br/>determination of magnetic moment by Rabi's atomic<br/>beam method.</li> <li>Nuclear quadrupole moment: Electric quadrupole<br/>moment of nucleus (Prolate and Oblate) qualitative</li> </ul> |
|                                                                                                                                          | Nuclear models: Liquid drop model, Semiempirical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nuclear models: Liquid drop model, stability against                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| mass formula, stability against beta decay, stability<br>against spontaneous fission. Fermi gas model- Fermi<br>energy and Kinetic energy<br>12 Hours                                                                                                                                                                      | beta decay, stability against spontaneous fission,<br>Fermi gas model, Fermi energy and kinetic energy,<br>nuclear shell model and magic numbers.<br>12 Hours                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit II                                                                                                                                                                                                                                                                                                                    | Unit II                                                                                                                                                                                                                                                                                                                    |
| Alpha decay: Gamow's theory of alpha decay, relation between mean life and decay energy. Hindrance factor.                                                                                                                                                                                                                 | <b>Alpha decay:</b> Gamow's theory of alpha decay, quantum mechanical tunneling, relation between mean life and decay energy. Hindrance factor.                                                                                                                                                                            |
| <b>Beta decay:</b> Energetics of beta decay, Neutrino hypothesis, Fermi's theory of beta decay (derivation), Fermi-Kurie plot. Neutrino- capture cross section and detection.                                                                                                                                              | <b>Beta decay:</b> Energetics of beta decay, continuous beta ray spectrum, neutrino hypothesis, Fermi's theory of beta decay (derivation), Fermi Kurie plot, non conservation of parity in beta decay                                                                                                                      |
| <b>Gamma decay:</b> Gamma transitions in nuclei and classifications. Internal conversion (qualitative)                                                                                                                                                                                                                     | <b>Gamma decay:</b> Gamma transitions in nuclei and classifications. Internal conversion(qualitative)                                                                                                                                                                                                                      |
| <b>Detectors</b> : Gas filled detector- proportional counter,<br>Scintillation detector-NaI(Tl) gamma ray detector<br>spectrometer, semiconductor detector(qualitative)<br>12 Hours                                                                                                                                        | <b>Detectors:</b> Gas filled detector, proportional counter,<br>NaI(Tl) scintillation gamma ray spectrometer,<br>semiconductor detector for detection of X ray and<br>gamma radiation.<br>12 Hours                                                                                                                         |
| Unit III                                                                                                                                                                                                                                                                                                                   | Unit III                                                                                                                                                                                                                                                                                                                   |
| <b>Nuclear Reaction:</b> Types of nuclear reactions.<br>conservation laws, laboratory and center of mass<br>systems. Q-value of a nuclear reaction and relation<br>between Q value and energy of outgoing particle.<br>Threshold energy. Compound nucleus model and its<br>experimental verification, Briet-Wigner formula | <b>Nuclear Reaction:</b> Types of nuclear reactions.<br>conservation laws, laboratory and center of mass<br>systems. Q value of a nuclear reaction and relation<br>between Q value and energy of outgoing particle,<br>threshold energy. Compound nucleus model and its<br>experimental verification. Briet Wigner formula |

| (qualitative).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (qualitative).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reactor Physics</b> : Condition for chain reaction, four factor formula, Thermal reactor, Fast breeder reactor.<br><b>Elementary particles</b> : Classification of elementary particles as lantana, masses and harvana.                                                                                                                                                                                                                                                                                                                                                             | <b>Reactor Physics:</b> Condition for controlled chain reaction, four factor formula, thermal reactor, fast breeder reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| particles as leptons, mesons and baryons. Quark model (Qualitative).<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Elementary particles:</b> Fundamental interactions and their general features, conservation laws, classification of elementary particles as leptons, mesons and baryons. Quark model (Qualitative).<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit IV (Modified or Improved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Interactions of Gamma rays and x-rays with matter : Photoelectric effect, Compton Effect, Pair production. Mass attenuation co-efficient, attenuation co-efficient for mixture and additivity law. Resonance scattering of gamma rays, Mossbauer effect and its simple applications.</li> <li>Interaction of Charged particles with matter: Energy loss of heavy charged particles and electrons by ionization and radiation processes. Application of stopping power.</li> <li>Application of Nuclear Physics: Trace elemental analysis, alpha decay applications</li> </ul> | Interactions of gamma rays and charged particles<br>with matter: Photoelectric effect, Compton effect and<br>pair production, Mass attenuation co efficient of<br>gamma rays. Mossbauer effect; Resonance scattering<br>of gamma rays, experimental technique, simple<br>applications. Energy loss of heavy charged particles;<br>ionization, radiation processes, Bethe Bloch formula,<br>applications. Energy loss of fast electrons; ionization,<br>excitation and radiation process (Bremsstrahlung).<br>Application of Nuclear Physics: Trace elemental<br>analysis and alpha decay applications, applications of<br>radioisotopes in cancer treatment, agriculture and<br>industry.<br>12 Hours |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1. Nuclei and Particles : E. Segre – The Benjamin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. Nuclei and Particles : E. Segre – The Benjamin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|            | Publishing, Pvt Ltd (1977).                      | Publishing, Pvt Ltd (1977).                      |
|------------|--------------------------------------------------|--------------------------------------------------|
|            | 2. Introductory Nuclear Physics : K.S. Krane-    | 2. Introductory Nuclear Physics : K.S. Krane     |
|            | John Wiley & Sons (1987).                        | John Wiley & Sons (1987).                        |
|            | 3. Atomic and Nuclear Physics: Vol. II           | 3. Atomic and Nuclear Physics: Vol. II           |
|            | S.N.Goshal-S. Chand and Company (1996).          | S.N.Goshal S. Chand and Company (1996).          |
|            | 4. Nuclear Physics: D.C.Tayal- Himalaya          | 4. Nuclear Physics: D.C.Tayal Himalaya           |
|            | Publishing House(2009)                           | Publishing House(2009)                           |
|            | 5. Nuclear and Partilce Physics: S.L.Kakani,     | 5. Nuclear and Partilce Physics: S.L.Kakani,     |
|            | Shubhra Kakani- Vira Books( 2008)                | ShubhraKakani Vira Books( 2008)                  |
|            | Shuolina Kakani- vina Books(2000)                | 6. Environmental radioactivity: Eisenbud M,      |
|            |                                                  | •                                                |
|            |                                                  | Academic Press (1987)                            |
| D          | eference Books                                   | Reference Books                                  |
| Λ          | elefence books                                   | Kelerence books                                  |
|            | 1. The Atomic Nucleus : R.D. Evans – Tata        | 1. The Atomic Nucleus : R.D. Evans – Tata        |
|            | McGraw Hill New Delhi (1992).                    | McGraw Hill New Delhi (1992).                    |
|            | 2. Physics of Nuclei and Particles: Marmer and   | 2. Physics of Nuclei and Particles: Marmer and   |
|            | E.Sheldon,Vol.II-Academic press (1970).          | E.Sheldon,Vol.II Academic press (1970).          |
|            |                                                  | -                                                |
|            | 3. Physics of Nuclear Reactors: S.Garag, F.Ahmed | 3. Physics of Nuclear Reactors: S.Garag,         |
|            | and L.S. Kothari. – Tata McGraw Hill New         | F.Ahmed and L.S. Kothari. – Tata McGraw          |
|            | Delhi (1986).                                    | Hill New Delhi (1986).                           |
|            | 4. Introductory Nuclear Physcis : Samuel Wong-   | 4. Introductory Nuclear Physcis : Samuel Wong    |
|            | Prentice Hall (1996).                            | Prentice Hall (1996).                            |
|            | 5. Fundamentals of Nuclear Physics : N.A.Jelly-  | 5. Fundamentals of Nuclear Physics : N.A.Jelly   |
|            | Cambridge University Press (1990).               | Cambridge University Press (1990).               |
|            | 6. Introduction to Nuclear Physics : Harald A.   | 6. Introduction to Nuclear Physics : Harald A.   |
|            | Enge-Addison – Wiseley (1996).                   | Enge Addison – Wiseley (1996).                   |
|            | 7. Introduction to Nuclear and Particle Physics: | 7. Introduction to Nuclear and Particle Physics: |
|            | V.K.Mittal, R.C. Verma, S.C. Gupta- PHI          | V.K.Mittal, R.C. Verma, S.C. Gupta PHI           |
|            | Learning Limited (2009).                         | Learning Limited (2009).                         |
|            |                                                  | 8. Radiation detectors: Kapoor S S and           |
|            |                                                  | Ramamurthy V S Wiley Eastern (1986).             |
| PG85P205   | Course DUET 2 4. Open Fleeting I Modern          | Course PHET 2.4: Open Elective Course – I        |
| r Goor 200 | Course PHET 2.4: Open Elective – I Modern        | Course FILE 1 2.4: Open Elective Course – I      |

| (Course PHCP<br>2.5): Practical III:<br>Electronics and<br>Condensed      | Physics<br>( <i>for students of other departments</i> )<br>Syllabus is given at the end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Modern Physics<br>(for students of other departments)<br>Syllabus is given at the end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matter Physics<br>Contact hours per<br>week: 4<br>Number of Credits:<br>4 | <ol> <li>Study of triggered SR, JK and D-flip-flops.</li> <li>Ripple counter and Shift Register using JK flip-<br/>flop.</li> <li>Regulated power supply using 78xx integrated<br/>circuits.</li> <li>R-2R ladder network D/A converter</li> <li>Fortran Programming using Fortran 77.</li> <li>Hall Effect and Hall mobility in<br/>semiconductors.</li> <li>Determination of energy gap by reverse<br/>saturation current of pn-junction.</li> <li>Computer programming using Fortran 77.</li> <li>Developing of X-ray pattern for a cubic lattice<br/>using x-ray diffractometer and indexing of the<br/>pattern.</li> </ol> | <ol> <li>Study of triggered SR, JK and D-flip-flops.</li> <li>Ripple counter and Shift Register using JK flip-flop.</li> <li>Regulated power supply using 78xx integrated circuits.</li> <li>R 2R ladder network D/A converter</li> <li>Fortran Programming using Fortran 77.</li> <li>Hall Effect and Hall mobility in semiconductors.</li> <li>Determination of energy gap by reverse saturation current of pn-junction.</li> <li>Computer programming using Fortran 77.</li> <li>Developing of X-ray pattern for a cubic lattice using X-ray diffractometer and indexing of the pattern.</li> </ol> |
|                                                                           | (New experiments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (New experiments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                           | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                           | <ol> <li>Microelectronics Circuits: Adel S.Sedra and<br/>Kenneth C.Smith, Oxford University, Press<br/>(1991).</li> <li>Electronic devices and circuits: R. Boylstead<br/>and Nashalsky : PHI publications (1999).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Microelectronics Circuits: Adel S.Sedra and<br/>Kenneth C.Smith, Oxford University, Press<br/>(1991).</li> <li>Electronic devices and circuits: R. Boylstead<br/>and Nashalsky : PHI publications (1999).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                           | <ol> <li>Electronic Principles: A.P. Malvino, TMH<br/>Publications (1984).</li> <li>Operational Amplifier and Linear IC's: Robert</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>Electronic Principles: A.P. Malvino, TMH<br/>Publications (1984).</li> <li>Operational Amplifier and Linear IC's: Robert</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                    | F. Coughlin and Frederick F. Driscoll, PHI          | F. Coughlin and Frederick F. Driscoll, PHI         |
|--------------------|-----------------------------------------------------|----------------------------------------------------|
|                    | publications (1994).                                | publications (1994).                               |
|                    | 5. Op-Amps and Linear Integrated Circuits: R.       | 5. Op Amps and Linear Integrated Circuits: R.      |
|                    | Gayakwad, PHI publications, New Delhi               | Gayakwad, PHI publications, New Delhi              |
|                    | (2000).                                             | (2000).                                            |
|                    | 6. Elementary Solid State Physics: M.A. Omar,       | 6. Elementary Solid State Physics: M.A. Omar,      |
|                    | Addison Wesley Pub. Ltd. New Delhi (1993).          | Addison Wesley Pub. Ltd. New Delhi (1993).         |
|                    | 7. X-ray Diffraction: B.D. Cullity, Addison-        | 7. X ray Diffraction: B.D. Cullity, Addison        |
|                    | Wesley, Ltd. New York (1972).                       | Wesley, Ltd. New York (1972).                      |
|                    | 8. Introduction to Solid State Physics: C. Kittel,  | 8. Introduction to Solid State Physics: C. Kittel, |
|                    | Wiley Eastern Ltd. Bangalore (1976).                | Wiley Eastern Ltd. Bangalore (1976).               |
|                    | 9. Laboratory Manuals.                              | 9. Laboratory Manuals.                             |
| PG85P206           |                                                     |                                                    |
| (Course PHCP       | 1. Study of Elliptically Polarized Light            | 1. Study of Elliptically Polarized Light           |
| 2.6): Practical-IV | 2. Study of Beer's law                              | 2. Study of Beer's law                             |
| - Atomic &         | 3. Study of Dispersion of a Glass Spectrograph.     | 3. Study of Dispersion of a Glass Prism            |
| Molecular          | 4. Stefan's constant of Radiation : High resistance | Spectrograph.                                      |
| Physics and        | by leakage method                                   | 4. Stefan's constant of Radiation : High           |
| Nuclear &          | 5. Study of gamma ray spectrum obtained in Nal      | resistance by leakage method                       |
| Particle Physics   | (TI) detector spectrometer.                         | 5. Study of gamma ray spectrum obtained in Nal     |
|                    | 6. Study of attenuation of gamma rays in matter.    | (TI) detector spectrometer.                        |
| Contact hours per  | 7. computer programming using Fortran 77            | 6. Study of attenuation of gamma rays in matter.   |
| week: 4            |                                                     | 7. computer programming using Fortran 77           |
| Number of credits: | (New experiments may be added)                      |                                                    |
| 4                  |                                                     | (New experiments may be added)                     |
|                    | References                                          | References                                         |
|                    |                                                     |                                                    |
|                    | 1. Advanced Practical Physics: (9th Edition) B. C   | 1. Advanced Practical Physics: (9th Edition) B. C  |
|                    | Worsnop & H.T. Flint, Methuen & Co. Ltd.            | Worsnop & H.T. Flint, Methuen & Co. Ltd.           |
|                    | onion (1951)                                        | onion (1951)                                       |
|                    | 2. Instrumental Methods of Analysis : (6th          | 2. Instrumental Methods of Analysis : (6th         |
|                    | Edition) H. H. Willard, L. L. Merit, J. A. Dean     | Edition) H. H. Willard, L. L. Merit, J. A. Dean    |

| & F. A. Settle, J. K. Jain for CBS Publishers                | & F. A. Settle, J. K. Jain for CBS Publishers                |
|--------------------------------------------------------------|--------------------------------------------------------------|
| (1986)                                                       | (1986)                                                       |
| 3. Optics: (2nd Edition) A. K. Gathak Tata Mc                | 3. Optics: (2nd Edition) A. K. Gathak Tata Mc                |
| Graw Hill Pub. Comp. Ltd New Delhi (1977)                    | Graw Hill Pub. Comp. Ltd New Delhi (1977)                    |
| 4. Lab Manuals / Books / Charts.                             | 4. Lab Manuals / Books / Charts.                             |
| 5. Experiments in Modern Physics: A C.                       | 5. Experiments in Modern Physics: A C.                       |
| Melissions, Academic press (N.Y.) (1966).                    | Melissions, Academic press (N.Y.) (1966).                    |
| 6. Experiments in Nuclear Science ORTEC                      | 6. Experiments in Nuclear Science ORTEC                      |
| Application Note ORTEC, (1971) (Available in                 | Application Note ORTEC, (1971) (Available                    |
| Nuclear Physics Laboratory)                                  | in Nuclear Physics Laboratory)                               |
| 7. Practical Nucleonics: F.J. Pearson., and R.R.             | 7. Practical Nucleonics: F.J. Pearson., and R.R.             |
| Osborne, E & F.N. Spon Ltd., London (1960)                   | Osborne, E & F.N. Spon Ltd., London (1960)                   |
| 8. The Atomic Nucleus : R.D. Evans Tata Mc                   | 8. The Atomic Nucleus : R.D. Evans Tata Mc                   |
| Graw Hill Pub. Comp. Ltd., (1960)                            | Graw Hill Pub. Comp. Ltd., (1960)                            |
| 9. Nuclear Radiation Detectors: S.S. Kapoor and              | 9. Nuclear Radiation Detectors: S.S. Kapoor and              |
| V.S. Ramamurthy, Wiely Eastern Limited                       | V.S. Ramamurthy, Wiely Eastern Limited                       |
| (1986)                                                       | (1986)                                                       |
| 10. Experimental Nucleonics : E Bleuler and G.J.             | 10. Experimental Nucleonics : E Bleuler and G.J.             |
| Goldsmith, Rinehart & Co, Inc. (NY) (1958)                   | Goldsmith, Rinehart & Co, Inc. (NY) (1958)                   |
| Semester – III                                               | Semester – III                                               |
| Course PHCT 3.1: Statistical Mechanics                       | PG85T301 (Course PHCT 3.1): Quantum                          |
| (Shifted to 4 <sup>th</sup> sem 4.2)                         | Mechanics – II                                               |
|                                                              | (No changes have made only shifted here From 4 <sup>th</sup> |
| Teaching hours per week: 04                                  | sem 4.2)                                                     |
| No. of Credits: 04                                           |                                                              |
|                                                              | Teaching hours per week: 04                                  |
| Unit I                                                       | Credits per week: 04                                         |
|                                                              |                                                              |
| Phase spaces and ensembles: phase spaces, Liouville          | Unit I                                                       |
| equation; concept of ensembles, postulate of equal a         |                                                              |
| <i>proiri</i> probability; canonical ensemble: most probable | Linear Vector Algebra: Linear Vectors space,                 |
| distribution of energies, thermodynamic relations in         | Orthonormality, linear independence. Operators               |
| canonical ensemble; canonical partition function; micro      | Eigenvalues, eigenvectors; Hermitian, Unitary and            |
|                                                              | intervention, engenteetters, mermittan, onnary and           |

| canonical ensemble; grand canonical ensemble, grand<br>partition function.<br>Partition function for the system and for the particles,<br>translational partition function; Gibbs paradox: Sackur-<br>Tetrode equation; Boltzmann equipartition theorem;<br>rotational partition function; vibrational contribution to<br>thermodynamic quantities; electronic partition<br>function.<br>12 hrs | Projection operators. Bra and Ket notation for<br>vectors. The elements of Representation Theory. Idea<br>of Measurements, Observables and generalized<br>uncertainty relation. Coordinate and momentum<br>representations. Quantum Poisson<br>Bracket.<br><b>Quantum Dynamics:</b> Schrödinger and Heisenberg<br>pictures; Interaction picture; the Heisenberg equation<br>of motion. Linear harmonic oscillator problem by<br>matrix method.<br>12 Hours                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantum Statistics: symmetric and antisymmetric<br>state functions for indistinguishable particles; Bose-<br>Einstein and Fermi-Dirac distributions, weak and<br>strong degeneracy of perfect gases; Bose-Einstein<br>condensation, Black body radiation.<br>12 hrs<br>Unit III                                                                                                                 | Unit II<br>Angular Momentum: Introduction, angular<br>momentum operator and its representation, Eigen<br>values and eigen functions of $L^2$ , commutation<br>relations, Angular momentum and rotations. Bra and<br>Ket representation, Eigen values, ladder operators,<br>Eigenvectors of $J^2$ and $J_z$ . Angular momentum matrices<br>for j=1/2 and j=1. Pauli wavefunction and equation,<br>Theory of addition of two angular momenta, Clebsch<br>Gordan coefficients, allowed values of j, singlet and<br>triplet states (qualitative).<br>12 Hours |
| Fluctuations and Brownian motion: Fluctuations in<br>canonical, grand canonical and microcanonical<br>ensembles. Brownian motion: Langevin equation,<br>random walk problem. Diffusion: Einstein relation for<br>mobility. Time dependence of fluctuations: power<br>spectrum, spectral density; persistence and correlation<br>of fluctuations; Wiener-Khinchin theorem, Johnson               | Unit III<br>Approximation Methods: First order stationary<br>perturbation theory for a degenerate case; the<br>secular equation; applications: particle in a infinitely<br>deep potential well subject to perturbing<br>potential and, Stark effect in hydrogen atom; Second                                                                                                                                                                                                                                                                              |

| equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | order perturbation theory and its application<br>to a linear harmonic oscillator subject to a potential.<br>W.K.B. approximation: Connection formulas;<br>application to a potential well and alpha decay. The<br>Variation method and its application to the ground<br>state of hydrogen atom and helium atom.<br>12 Hours                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Irreversible thermodynamics: Onsager reciprocity<br>relations and their derivations; thermoelectric<br>phenomena, linear response theory, Kubo relations,<br>fluctuation dissipation theorem; Saha theory of<br>ionisation.Liquid helium: phase diagram, superfluid properties,<br>two-fluid model, thermo-mechanical, fountain and<br>mechano-caloric effects;Text book                                                                                                                                                   | Unit IV<br>Relativistic Quantum Mechanics: Klein–Gordon<br>equation. Dirac's relativistic equation for a free<br>particle: commutation relations and matrices for and ;<br>free particle solutions; probability charge and current<br>densities; positive and negative energy states; the spin<br>of the Dirac particle, Zitterbewegung. Dirac equation<br>in electromagnetic potentials and magnetic moment.<br>Dirac equation for a central field; the hydrogen atom:<br>energy levels and fine structure (without derivation).<br>12 Hours |
| <ol> <li>Statistical mechanics and properties of matter:<br/>Theory and applications: E.S.R. Gopal, John Wiley &amp;<br/>Sons, New York (1974).</li> <li>Statistical mechanics (2nd ed.): B.K. Agarwal and<br/>M. Eisner, New Age International (P) Ltd. Publishers,<br/>New Delhi (1998).</li> <li>Reference Books         <ol> <li>Fundamentals of statistical and thermal Physics:<br/>F.Reif, McGrawHill Ltd., New Delhi (1965).</li> <li>Elementary statistical physics: C. Kittel, John Wiley</li> </ol> </li> </ol> | <ol> <li>Text Books         <ol> <li>Quantum Mechanics (2nd Edition) : L. I.<br/>Schiff, McGraw – Hill Co, New York (1955)</li> <li>Quantum Mechanics (Vol. I) : A. Messiah,<br/>North Holland Pub Co, Amsterdam (1962)</li> <li>Quantum Mechanics – Theory and<br/>Applications (3rd Edition): A. Ghatak and S.<br/>Lokanathan, MacMillan India Ltd. New Delhi<br/>(1984)</li> <li>A Text book of quantum Mechanics: P. M.<br/>Mathews and K. Venkateshan, Tata Mc Graw -</li> </ol> </li> </ol>                                             |

|                                                          | & Sons, New York (1958).                                                                                                                                                                                                                                                                                                                                                                                                                         | Hill, New Delhi (1987).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | 3. Statistical mechanics; Theory and applications; S.K.Sinha, TMH Pub. Ltd., New Delhi (1990).                                                                                                                                                                                                                                                                                                                                                   | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol> <li>The Principles of Quantum Mechanics (4th<br/>Edition) : P.A.M. Dirac, Oxford Univ Press,<br/>New York (1958)</li> <li>Quantum Mechanics (1st Edition): V. K.<br/>Thankappan, New Age Intl. Pvt. Ltd., New<br/>Delhi (1985)</li> <li>Quantum Mechanics : E. Merzbacher., John<br/>Wiley, New York (1970)</li> <li>Modern Quantum Mechanics : J. J. Sakurai,<br/>Addison Wesley, Massachusetts (1994)</li> <li>Applied Quantum Mechanics: A.F.J Levi,<br/>Cambridge Univ Press, 2003.</li> </ol> |
| PG85T302                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cambridge Oniv Fress, 2005.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (Course PHST-                                            | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.2): Electronics –                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I<br>Teaching hours per<br>week: 04<br>No. of credits: 4 | <b>Transmission lines:</b> Line of cascaded sections,<br>transmission line general solution, physical<br>significance of the equations, the infinite line,<br>wavelength, velocity of propagation, wave form<br>distortion, distortion less line, telephone cable,<br>induction loading of telephone cable, reflection of line<br>not terminated with characteristic impedance, open and<br>short circuited lines, insertion losses.<br>12 hours | <b>Transmission lines:</b> Line parameters, inductance and capacitance of open wire and coaxial line, line of cascaded sections, transmission line general solution, physical significance of the equations, the infinite line, wavelength, velocity of propagation, wave form distortion, distortion less line, telephone cable, induction loading of telephone cable, reflection of line not terminated with characteristic impedance, open and short circuited lines, insertion losses.              |
|                                                          | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                          | Lines at RF: Parameters of open wire line at high                                                                                                                                                                                                                                                                                                                                                                                                | Lines at RF: Parameters of open wire line at high                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| frequencies, parameter of co-axial cable at high<br>frequencies, constants of lines of zero dissipation<br>voltage and current on dissipation less lines, standing<br>wave ratio, impedance of open and short circuit lines<br>the <sup>1</sup> / <sub>4</sub> wave line, <sup>1</sup> / <sub>2</sub> wave line, impedance matching o<br><sup>1</sup> / <sub>2</sub> wave line, single stub matching.<br>12 hour | frequencies, constants of lines of zero dissipation,<br>voltage and current on dissipation less lines, standing<br>wave ratio, impedance of open and short circuit lines,<br>the <sup>1</sup> / <sub>4</sub> wave line, <sup>1</sup> / <sub>2</sub> wave line, impedance matching of<br><sup>1</sup> / <sub>2</sub> wave line, single stub matching, Circle diagram for |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                       | Unit III                                                                                                                                                                                                                                                                                                                                                                |
| <b>Waveguides:</b> Solutions of wave equations in rectangular and cylindrical coordinates, TE and TM modes in rectangular and cylindrical wave guides characteristics of rectangular and circular wave guides.                                                                                                                                                                                                   | rectangular and cylindrical coordinates, TE and TM                                                                                                                                                                                                                                                                                                                      |
| Antennas : Isotropic radiator, gain, bandwidth<br>radiation pattern, directivity and effect of length o<br>antenna, radiation of directional antenna, antenna a<br>aperture, different types of apertures, effect of earth or<br>antenna pattern. Principles of pattern multiplication<br>phased arrays, Yagi-Uda antenna, helical antenna.<br>12 hours                                                          | distributions Resonant antennas, radiation patterns,<br>and length calculations, Nonresonant antennas,<br>Antenna gain and effective radiated power, Radiation<br>measurement and field intensity, Antenna resistance,<br>Bandwidth, beam width, and polarization,                                                                                                      |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                        | Unit IV                                                                                                                                                                                                                                                                                                                                                                 |
| Satellite communication: Introduction, Kepler's laws<br>orbits, geostationary orbit. Power systems, attitude                                                                                                                                                                                                                                                                                                     | · 1                                                                                                                                                                                                                                                                                                                                                                     |

| control, satellite station keeping, antenna look angles,<br>limits of visibility, frequency plans and polarization,<br>transponders, up-link and down-link power budget<br>calculations, digital carrier transmission, multiple<br>access methods, fixed and mobile satellite service earth<br>stations, INSAT<br>12 hours                                                                                                                                                                                                                                  | attitude control, satellite station keeping, antenna look<br>angles, limits of visibility, frequency plans and<br>polarization, transponders, up link and down link<br>power budget calculations, digital carrier transmission,<br>multiple access methods, fixed and mobile satellite<br>service, earth stations, INSAT.<br>12 Hours                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>Networks, Lines and Fields: J. D. Ryder, Prentice<br/>Hall India Pvt., Ltd., New Delhi (1995)</li> <li>Electronic communications, 4th edition: Dennis<br/>Roddy and John Coolen, Prentice – Hall of India Pvt.<br/>Ltd. New Delhi (1997)</li> <li>Electronic Communication systems – 4th edition:<br/>George Kennedy and Bernard Davis, Tata McGraw –<br/>Hill Publishing Company Ltd., New Delhi (1999).</li> <li>Satellite communication – 3rd edition, Dennis<br/>Roddy, McGraw – Hill Publishing Company Ltd., New<br/>Delhi (2001)</li> </ol> | <ol> <li>Networks, Lines and Fields: J. D. Ryder,<br/>Prentice Hall India Pvt., Ltd., New Delhi<br/>(1995)</li> <li>Electronic communications, 4th edition:<br/>Dennis Roddy and John Coolen, Prentice –<br/>Hall of India Pvt. Ltd. New Delhi (1997)</li> <li>Electronic Communication systems – 4th<br/>edition: George Kennedy and Bernard Davis,<br/>Tata McGraw – Hill Publishing Company Ltd.,<br/>New Delhi (1999).</li> <li>Satellite communication – 3rd edition, Dennis<br/>Roddy, McGraw – Hill Publishing Company<br/>Ltd., New Delhi (2001)</li> </ol> |
| References books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | References books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Communications Systems: Simon Haykin, Wiley<br/>Eastern Ltd., New Delhi</li> <li>Radio Engineering: G. K. Mittal, Khanna Publishers,<br/>Delhi (1998)</li> <li>Modern Communication Systems – Principles and<br/>Applications : Leon W. Couch II, Prentice Hall of India<br/>Pvt. Ltd. New Delhi (1998)</li> </ol>                                                                                                                                                                                                                                 | <ol> <li>Communications Systems: Simon Haykin,<br/>Wiley Eastern Ltd., New Delhi</li> <li>Radio Engineering: G. K. Mittal, Khanna<br/>Publishers, Delhi (1998)</li> <li>Modern Communication Systems – Principles<br/>and Applications : Leon W. Couch II, Prentice<br/>Hall of India Pvt. Ltd. New Delhi (1998)</li> </ol>                                                                                                                                                                                                                                         |

| PG85T302<br>(Course PHST<br>3.2): Condensed | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matter Physics –<br>I                       | <b>Periodic Structures:</b> Reciprocal lattice and its properties, periodic potential and Bloch theorem, reduction to Brillouin zone, Born-von Karman                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Periodic Structures:</b> Reciprocal lattice and its properties, periodic potential and Bloch theorem, reduction to Brillouin zone, Born von Karman                                                                                                                                                                                                                                                                                                                                                                                    |
| Teaching hours per<br>week: 4               | boundary conditions. Counting of states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | boundary conditions. Counting of states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No. of Credit: 4                            | <b>Electron States :</b> Nearly free electron model, discontinuity at zone boundary, energy gap and Bragg reflection. Tight binding method, band width and effective mass in linear lattice and cubic lattices. APW and <b>k.p.</b> methods of band structure calculations.<br>12 hours                                                                                                                                                                                                                                                                                                                          | <b>Electron States:</b> Nearly free electron model, discontinuity at zone boundary, energy gap and Bragg reflection. Tight binding method, band width and effective mass in linear lattice and cubic lattices. APW and k.p. methods of band structure calculations.<br>12 Hours                                                                                                                                                                                                                                                          |
|                                             | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             | <b>Fermi surface Studies :</b> Extended, reduced and<br>periodic zone schemes. Construction of Fermi surface<br>in square lattice, Harrison construction, slope of bands<br>at zone boundary, electron orbits, hole orbits and open<br>orbits. Experimental methods: Electron dynamics in a<br>magnetic field, cyclotron frequency and mass,<br>cyclotron resonance. Quantization of orbits in a<br>magnetic field, Landau quantization, degeneracy of<br>Landau levels, quantization of area of orbits in $\mathbf{k}$ –<br>space, de Hass-van Alphen effect, extremal orbits.<br>12 hours<br><b>Unit – III</b> | <b>Fermi surface Studies:</b> Extended, reduced and periodic zone schemes. Construction of Fermi surface in square lattice, Harrison construction, slope of bands at zone boundary, electron orbits, hole orbits and open orbits. Experimental methods: Electron dynamics in a magnetic field, cyclotron frequency and mass, cyclotron resonance. Quantization of orbits in a magnetic field, Landau quantization, degeneracy of Landau levels, quantization of area of orbits in k – space, de Hass-van Alphen effect, external orbits. |
|                                             | Quantization of lattice vibrations and phonons:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             | Potential and kinetic energies in terms of generalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Electrical Transport in Metals and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| coordinates and momenta, Hamiltons equations of           | Semiconductors: Boltzmann equation, relaxation time                                         |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| motion, quantization of normal modes.                     | approximation, electrical conductivity, thermal                                             |
|                                                           | conductivity, thermoelectric effects Calculation of                                         |
| Elastic properties of solids : Stress and strain tensors, | relaxation time, scattering by impurities and lattice                                       |
| elastic constants and Hooke's law, strain energy,         | vibrations, Mattheisen's rule, temperature dependence                                       |
| reduction of elastic constants from symmetry, isotropy    | of resistivity, residual resistance.                                                        |
| for cubic crystals, technical moduli and elastic          | 12 Hours                                                                                    |
| constants. Propagation of long wavelength vibrations.     |                                                                                             |
| Experimental determination of elastic constants by        | Unit IV                                                                                     |
| ultrasonic interference method.                           |                                                                                             |
| 12 hours                                                  | Quantization of lattice vibrations and phonons:                                             |
|                                                           | Potential and kinetic energies in terms of generalized                                      |
| Unit – IV                                                 | coordinates and momenta, Hamiltons equations of                                             |
|                                                           | motion, quantization of normal modes.                                                       |
| <b>Electrical Transport in Metals and Semiconductors</b>  |                                                                                             |
| : Boltzmann equation, relaxation time approximation,      | Elastic properties of solids: Stress and strain tensors,                                    |
| electrical conductivity, thermal conductivity,            | elastic constants and Hooke's law, strain energy,                                           |
| thermoelectric effects Calculation of relaxation time,    | reduction of elastic constants from symmetry, isotropy                                      |
| scattering by impurities and lattice vibrations,          | for cubic crystals, technical moduli and elastic                                            |
| Mattheisen's rule, temperature dependence of              |                                                                                             |
| resistivity, residual resistance.                         | Experimental determination of elastic constants by                                          |
| 12 hours                                                  | ultrasonic interference method.                                                             |
|                                                           | 12 Hours                                                                                    |
| Text Books                                                |                                                                                             |
| 1 Driveriales of Theorem of Soliday I. M. Zimon           | Text Books                                                                                  |
| 1. Principles of Theory of Solids: J. M. Ziman,           | 1 Drive inter of Theorem of Collider I M Zimon                                              |
| Cambridge University Press, (1972).                       | 1. Principles of Theory of Solids: J. M. Ziman,                                             |
| 2. Introduction to Solid State Physics : C. Kittel, Wiley | Cambridge University Press, (1972).<br>2. Introduction to Solid State Physics : C. Kittel,  |
| Eastern Ltd, Bangalore (1976).                            | 2. Introduction to Solid State Physics : C. Kittel,<br>Wiley Eastern Ltd, Bangalore (1976). |
| 3. Lattice Dynamics: A. K. Ghatak and L. S. Kothari,      | 3. Lattice Dynamics: A. K. Ghatak and L. S.                                                 |
| Addison Wesley, Reading (1971).                           | Kothari, Addison Wesley, Reading (1971).                                                    |
| 4. Solid State Physics: N. W. Aschroft and A. D.          | 4. Solid State Physics: J. D. Patterson and B.C.                                            |
| Mermin, Saunders College Publishing New York              | 1. Sond State Thysics. J. D. Tatterson and D.C.                                             |

|                                                                                                                                                     | (1976).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bailey, Springer Verlag, Berlin (2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     | References Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | References Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                     | <ol> <li>Physics of Solids: F. C. Brown, Benjamin Inc.<br/>Amsterdam (1967).</li> <li>Solid State Physics: J. D. Patterson and B.C. Bailey,<br/>Springer-Verlag, Berlin (2007)</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi (2009)</li> </ol>                                                                                                                                                                                                        | <ol> <li>Physics of Solids: F. C. Brown, Benjamin Inc.<br/>Amsterdam (1967).</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi<br/>(2009)</li> <li>Solid State Physics: N. W. Aschroft and A. D.<br/>Mermin, Saunders College Publishing New<br/>York (1976)</li> </ol>                                                                                                                                                                                             |
| PG85T302<br>(Course PHST                                                                                                                            | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2): Atomic &<br>Molecular<br>Physics -I<br>(Atomic and<br>Molecular<br>Spectra)<br>Teaching hours per<br>week: 4<br>No. of credits per<br>week: 4 | <ul> <li>One-electron atoms: Fine structure and Hyperfine structure: Fine structure of hydrogenic atoms (quantum mechanical treatment): energy shifts due to relativistic and spin orbit corrections, fine structure splitting (hydrogen atom), fine structure and intensities of spectral lines. The Lamb shift.</li> <li>Hyperfine structure and isotope shifts: magnetic dipole hyperfine structure; energy shift, hyperfine structure multiplet, hyperfine transitions in hydrogen, isotope shift.</li> </ul> | One electron atoms: Fine structure and Hyperfine<br>structure: Fine structure of hydrogenic atoms<br>(quantum mechanical treatment): energy shifts due to<br>relativistic and spin orbit corrections, fine structure<br>splitting (hydrogen atom), fine structure and intensities<br>of spectral lines. The Lamb shift.<br>Hyperfine structure and isotope shifts: magnetic<br>dipole hyperfine structure; energy shift, hyperfine<br>structure multiplet, hyperfine transitions in hydrogen,<br>isotope shift.<br>12 Hours |
|                                                                                                                                                     | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                     | <b>Interaction of One-electron Atoms with External</b><br><b>Electric and Magnetic fields:</b> (quantum mechanical<br>treatment) The Linear Stark effect-first order correction                                                                                                                                                                                                                                                                                                                                   | <b>Interaction of One electron Atoms with External</b><br><b>Electric and Magnetic fields:</b> (Quantum mechanical<br>treatment) The Stark effect-first order correction to                                                                                                                                                                                                                                                                                                                                                 |

| to energy and eigen states: splitting of the degenerate                                 | energy and eigen states: splitting of the degenerate     |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------|
| level of hydrogen; The Linear Zeeman effect: Normal                                     | level of hydrogen; the Zeeman effect: Normal Zeeman      |
| Zeeman effect-magnetic interaction energy, selection                                    | effect-magnetic interaction energy, selection rules,     |
| rules, Lorentz triplet, polarization states; the Paschen-                               | Lorentz triplet, polarization states; the Paschen-Back   |
| Back effect (qualititative); anomalous Zeeman effect-                                   | effect                                                   |
| magnetic interaction energy, selection rules, splitting of                              | (qualititative); anomalous Zeeman effect magnetic        |
| levels in hydrogen atom.                                                                | interaction energy, selection rules, splitting of        |
| 12 hours                                                                                | levels in hydrogen atom.                                 |
|                                                                                         | 12 Hours                                                 |
|                                                                                         |                                                          |
| Unit – III                                                                              | Unit III                                                 |
| Electronic States: MO theoretical treatment of H2+                                      | Elementary discussion of electronic states:              |
| and H2 electronic states and correlation of states.                                     | Electronic energy and Total energy, Born-                |
|                                                                                         | Oppenheimer approximation. Symmetry properties of        |
| Coupling Cases: Coupling of rotation and electronic                                     | electronic eigen functions.                              |
| motion in diatomic molecules. Hund's coupling cases,                                    |                                                          |
| Spin uncoupling, Lambda doubling, symmetry                                              | Vibrational structure of electronic bands; Progressions  |
| properties of rotational levels of Sigma and Pi                                         | and Sequences, isotope effect, Deslandres' table;        |
| electronic states.                                                                      | Intensity distribution in the vibrational structure of   |
| 12 hours                                                                                | electronic bands; the Franck-Condon principle            |
|                                                                                         | (absorption), Dissociation energy.                       |
|                                                                                         | MO theoretical treatment of $H_2^+$ and $H_2$ electronic |
|                                                                                         | states and correlation of states.                        |
|                                                                                         | 12 Hours                                                 |
| Unit – IV                                                                               | Unit IV                                                  |
|                                                                                         |                                                          |
| Electronic Transitions: Types of allowed electronic                                     | Finer details about electronic states and electronic     |
| transitions with selection rules. Rotational structure of                               | transitions: Coupling of Rotation and Electronic         |
| bands due to $\Sigma-\Sigma$ , $\Pi-\Sigma$ , $\Sigma-\Pi$ and $\Pi-\Pi$ transitions of | Motion:Coupling of rotation and electronic motion in     |
| singlet multiplicity; Perturbations-Kronig selection                                    | diatomic molecules. Hund's coupling cases, Spin          |
| rules. Continuous and diffuse spectra: Dissociation,                                    | uncoupling, Lambda doubling, symmetry properties of      |

| predissociation, determination of heat of dissociation.                                                                                                                                                                                                                                                                                                                                                                                                    | rotational levels of $\Sigma$ and $\Pi$ electronic states.                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Types of allowed electronic transitions; selection<br>rules, Rotational structure of bands due to $\Sigma - \Sigma$ , $\Pi - \Sigma$ ,<br>$\Sigma - \Pi$ and $\Pi - \Pi$ transitions of singlet multiplicity, P,Q,R<br>branches; the Fortrat diagram; combination relations;<br>evaluation of rotational constants.<br>12 Hours                                                                                                                         |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>Physics of Atoms and Molecules(2nd ed): Bransden<br/>B.H. and Joachain C.J., Pearson Education, India<br/>(2006)</li> <li>Atoms &amp; Molecules : Mitchel Weissbluth, Academic<br/>Press, N. Y. (1982)</li> <li>Molecular Spectra &amp; Molecular Structure(Vol-I):<br/>G.Herzberg, D. Van Nostrand Co. Princeton, N.J.<br/>(1945)</li> <li>Spectroscopy (Vol. 3):S. Walker &amp; B. P.<br/>Strauhghan, Chapman &amp; Hall, Lon (1976)</li> </ol> | <ol> <li>Physics of Atoms and Molecules(2nd ed):<br/>Bransden B.H. and Joachain C.J.,Pearson<br/>Education, India (2006)</li> <li>Atoms &amp; Molecules : Mitchel Weissbluth,<br/>Academic Press, N. Y. (1982)</li> <li>Molecular Spectra &amp; Molecular Structure(Vol<br/>I): G.Herzberg, D. Van Nostrand CoPrinceton,<br/>N.J. (1945)</li> <li>Spectroscopy (Vol. 3):S. Walker &amp; B. P.<br/>Strauhghan, Chapman &amp; Hall, Lon (1976)</li> </ol> |
| <ol> <li>Introduction to Atomic Spectra : H.E. White,<br/>McGraw – Hill, Tokyo (1934)</li> <li>Quantum Chemistry : Ira Levine, Prentice – Hall of<br/>India, New Delhi (1991)</li> <li>Fundamentals of Spectroscopy (2nd ed ): B.<br/>Narayan, Allied Publishers Ltd., New Delhi (1999).</li> <li>Modern Spectroscopy (4th Ed): J.M. Hollas, John<br/>Wiley &amp; Sons Ltd. UK 2004.</li> </ol>                                                            | <ol> <li>Introduction to Atomic Spectra : H.E. White,<br/>McGraw – Hill, Tokyo (1934)</li> <li>Quantum Chemistry : Ira Levine, Prentice –<br/>Hall of India, New Delhi (1991)</li> <li>Fundamentals of Spectroscopy (2nd ed ): B.<br/>Narayan, Allied Publishers Ltd., NewDelhi,<br/>(1999).</li> <li>Modern Spectroscopy (4th Ed): J.M. Hollas,<br/>John Wiley &amp; Sons Ltd. UK 2004.</li> </ol>                                                     |

| PG85T302<br>(Course<br>PHST3.2):                           | Unit – I                                                                                                                                                                                                                                                                                                                                       | Unit I                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclear &<br>Particle Physics –<br>I<br>Teaching hours per | <ul> <li>Basic Properties : Charge distribution in nuclei and nucleons by electron scattering experiment.</li> <li>Electric quadrupole moment : Expression for exial quadrupole moment, quadrupole moment of spheroidal</li> </ul>                                                                                                             | <b>Basic Properties:</b> Scattering of high energy electrons<br>by nucleus; Expression for Mott Scattering,<br>differential cross section, form factor, charge<br>distribution in nuclei.<br>Scattering of high energy electrons by nucleons;                                                                                                    |
| week: 4<br>No. of Credits: 4                               | <ul> <li>nucleus. Quadruple moment due to single nucleon is a state J.</li> <li>Magnetic dipole moment : Nuclear g factor for neutron and proton, expression for g factor for a</li> </ul>                                                                                                                                                     | Expression for Rosenbluth formula, electric and<br>magnetic form factors of protons, the magnetic form<br>factor of neutron, their distribution in nucleon<br>(Modified)                                                                                                                                                                         |
|                                                            | nucleon in a state J in special cases for odd proton and<br>odd neutron on extreme single particle model, Schmidt<br>limits.<br>12 hours                                                                                                                                                                                                       | <b>Electric quadrupole moment:</b> Expression for axial quadrupole moment, quadrupole moment of spheroidal nucleus. Quadruple moment due to single nucleon is a state J.                                                                                                                                                                         |
|                                                            |                                                                                                                                                                                                                                                                                                                                                | Magnetic dipole moment: Nuclear g factor for<br>neutron and proton, expression for g factor for a<br>nucleon in a state J in special cases for odd proton and<br>odd neutron on extreme single particle model, Schmidt<br>limits.<br>12 Hours                                                                                                    |
|                                                            | Unit – II                                                                                                                                                                                                                                                                                                                                      | Unit II                                                                                                                                                                                                                                                                                                                                          |
|                                                            | <b>Deuteron problem:</b> Basic properties, ground state of deuteron for square well potential, relation between the range and depth of potential. Non existence of excited states, Basic properties of the nn central force, deuteron in mixture of S and D states using magnetic moment. Range of tensor interaction using quadrupole moment. | <b>Nuclear forces:</b> Characteristics of nuclear forces,<br>deuteron problem, basic properties, ground state of<br>deuteron for square well potential, relation between<br>the range and depth of potential. Non-existence of<br>excited states, basic properties of non central force,<br>deuteron in mixture of S and D states using magnetic |

| 12hours                                                                                                                                                                                                                                                                                                                                                                                                                                           | moment. Range of tensor interaction using quadrupole<br>moment, saturation of nuclear forces. (Modified)<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nucleon-Nucleon Scattering : Scattering of neutron<br>by hydrogen molecules –ortho and para hydrogen, spin<br>dependence of nuclear force, effective range theory for<br>n-p scattering. Qualitative features of P-P scattering,<br>effect of Coulomb and nuclear scattering. High energy<br>n-p and P-P scattering (Qualitative) Meson theory of<br>nuclear force : Yukawa and pseudo scalar theory, one<br>pion exchange potential.<br>12 hours | Nucleon-Nucleon Scattering: n-p scattering, partial<br>wave analysis, scattering of neutron by hydrogen<br>molecules: ortho and para hydrogen, spin dependence<br>of nuclear force, effective range theory for n-p<br>scattering. Qualitative features of p p scattering, effect<br>of Coulomb and nuclear scattering. High energy n-p<br>and p-p scattering (qualitative). Meson theory of<br>nuclear force: Yukawa and pseudo scalar theory, one<br>pion exchange potential.<br>12 Hours |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Elementary Particles :</b> Pion – nucleon scattering and<br>its resonances. Strange particles : Associated<br>production-strangeness quantum number, Gell –Mann<br>and Nishijima formula, Kaons, lamda, sigma, omega<br>hyperons. Symmetry classification of elementary<br>particles- Eight Fold Symmetry- Weight diagram,<br>discovery of $\Omega$ - particle                                                                                 | <b>Elementary Particles:</b> Pion-nucleon scattering and its resonances. Strange particles:associated<br>Production-strangeness quantum number, Gell–Mann and Nishijima formula, Kaons, lamda, sigma, omega hyperons. Symmetry classification of elementary particles: SU(3) symmetry and eight-fold way, Gell-Mann Okubo formula, Weight diagram, discovery of $\Omega^{-}$ particle.                                                                                                     |
| Interactions and their Unification : Fundamental<br>interactions conservation laws, quark model,<br>experimental support for quark model, quark structure<br>of mesons and baryons. colour quark and gluons, quark<br>dynamics, charm, beauty and truth quarks, GUT.<br>12 hours                                                                                                                                                                  | Quark Model: fundamental representation of SU(3)<br>and quarks, experimental support for quark<br>model, quark structure of mesons and baryons, color<br>quark and gluons, quark dynamics, charm,<br>beauty and truth quarks, grand unification theory.                                                                                                                                                                                                                                    |

|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Modified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tex                                                                             | ext Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Joh<br>2. 5<br>II) 5<br>3. F<br>She<br>4.                                       | Introductory Nuclear Physics : Kenneth S. Krane,<br>hn Wiley and sons (1988)<br>Subatomic Physics : Nuclei and Particles (Volume<br>: Luc Valentin North Holland (1981)<br>Physics of Nuclei and Particles : P. Marmier and E.<br>eldon Academic press (1970)<br>Introduction to Particle Physics : M. P. Khanna<br>entice Hall of India (1990)                                                                                                                                                                             | <ol> <li>Introductory Nuclear Physics: Kenneth S.<br/>Krane, John Wiley and sons (1988)</li> <li>Subatomic Physics: Nuclei and Particles<br/>(Volume II) : Luc Valentin North Holland<br/>(1981)</li> <li>Physics of Nuclei and Particles: P. Marmier<br/>and E. Sheldon Academic press (1970)</li> <li>Introduction to Particle Physics: M. P. Khanna<br/>Prentice Hall of India (1990)</li> <li>Nuclear Physics: R. R. Roy and B.P. Nigam,<br/>Wiley Eastern (2014)</li> </ol>                                                                                |
| Ref                                                                             | eference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fra<br>2. 7<br>Add<br>3. 1<br>Pre<br>4. 4<br>(19<br>5. 7<br>stru<br>Wil<br>6. 1 | Subatomic Physics (Second Edition) : Hans<br>auenfelder and E. M. Henley, Prentice Hall (1991)<br>Introduction Nuclear Physics : Herald. A. Enge.,<br>Idison-Wesley (1983)<br>Introductory Nuclear Physics : Samuel S. M. Wong,<br>entice – Hall (1996)<br>Atomic Nucleus : R. D. Evans, Tata Mc Graw –Hill<br>982)<br>Theoretical Nuclear Physics Volume I : Nuclear<br>ucture : Amosde Shalit and Herman Feshbach, John<br>iley (1974)<br>Nuclear and particle Physics : W. Burcham and M.<br>bes, Addision-wesley (1998) | <ol> <li>Subatomic Physics (Second Edition) : Hans<br/>Frauenfelder and E. M. Henley, Prentice Hall<br/>(1991)</li> <li>Introduction Nuclear Physics : Herald. A.<br/>Enge., Addison Wesley (1983)</li> <li>Introductory Nuclear Physics : Samuel S. M.<br/>Wong, Prentice – Hall (1996)</li> <li>Atomic Nucleus : R. D. Evans, Tata Mc Graw<br/>–Hill (1982)</li> <li>Theoretical Nuclear Physics Volume I :<br/>Nuclear structure : AmosdeShalit and Herman<br/>Feshbach, John Wiley (1974)</li> <li>Nuclear and particle Physics : W. Burcham and</li> </ol> |

|                                                                                                             | <ul> <li>7. Theoretical Nuclear Physics : J. M. Blatt and V. F. Weisskoff, Wiley (1962)</li> <li>8. Inroduction to quantum electrodynamics and particle physics: Deep Chadra Joshi,</li> <li>9. Modern Atomic and Nuclear Physics: A.B. Gupta-Books and Allied (2009)</li> </ul>                                                                                                                                                                                                                                                                                                                 | <ul> <li>M. Jobes, Addision wesley (1998)</li> <li>7. Theoretical Nuclear Physics : J. M. Blatt and V. F. Weisskoff, Wiley (1962)</li> <li>8. Inroduction to quantum electrodynamics and particle physics: Deep Chadra Joshi,</li> <li>9. Modern Atomic and Nuclear Physics: A.B. Gupta Books and Allied (2009)</li> <li>10. Nuclear Physics: S. N. Ghoshal, S Chand &amp; Company (2014)</li> <li>11. Nuclear Physics: D. C. Tayal, Himalaya Publishing House (5th ed.) (2013)</li> <li>12. Introduction to Elementary Particles: D. Griffiths, John Wiley (1987)</li> </ul> |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T303<br>(Course PHST<br>3.3): Electronics –<br>II<br>Teaching hours per<br>week: 4<br>No. of credits: 4 | Unit – I<br>Basic concepts of measurements & instruments:<br>Static characteristics of instruments, accuracy &<br>precision, sensitivity, reproducibility, errors,<br>Transducers, classification & selection criteria,<br>principles of piezoelectric, photoelectric,<br>thermoelectric transducers, resistance temperature<br>transducers (RTD), Thermister, strain gauge, load cells,<br>LVDT Electronic instruments for measurement, Digital<br>voltmeter, principles of electronic multimeter, digital<br>multimeter, Q-meter, Electronic LCR meter, Frequency<br>& time interval counters. | Unit I<br>Basic concepts of measurements & instruments:<br>Static characteristics of instruments, accuracy &<br>precision, sensitivity, reproducibility, errors,<br>Transducers, classification & selection criteria,<br>principles of piezoelectric, photoelectric,<br>thermoelectric transducers, resistance temperature<br>transducers (RTD), Thermister, strain gauge, load<br>cells, LVDT. Digital voltmeter, digital multimeter, Q<br>meter, Electronic LCR meter, Frequency & time<br>interval counters.<br>12 Hours                                                   |
|                                                                                                             | 12 hours         Unit – II         Biomedical Instrumentation: Electrical signal produced by biological cells, transducers for detection                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| of the biological signals. Analysis and recording of<br>signals: ECG, EMG, EEG, pace makers, defibrillators,<br>Magnetic resonance imaging,<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                                        | instrumentation, physiological systems of the body,<br>sources of biomedical signals, basic medical<br>instrumentation system, performance requirements of<br>medical instrumentation systems, intelligent medical<br>instrumentation systems, consumer and portable<br>medical equipment, implantable medical devices,<br>micro-electro mechanical systems (MEMS), wireless<br>connectivity in medical instruments,<br>electrocardiograph(ECG), vector cardiograph (VCG),<br>phonocardiograph (PCG), digital stethoscope,<br>electromyography,magnetic resonance imaging<br>(MRI),real-time ultrasonic imaging systems. pace<br>makers, defibrillators.<br>12 Hours                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Continuous time signals</b> : Representation of continuous time signals, discrete time signals, standard test signals. General definition of a system. Examples of a system. Basic system properties. Continuous time systems defined by an input/output differential equation- system modeling- integrator realization. Discrete time systems defined by an input/output difference equation- realization- convolution representation- convolution of discrete time signals-convolution of linear time invariant continuous time systems- numerical convolutions. 12 hours | <b>Continuous time signals:</b> Classification of signals, continuous time signals, discrete time signals, standard test signals, operations on signals. Definition of a system, classification of system, examples of systems. Classification of system, Continuous time systems defined by an input/output differential equation, system modeling, zero input response zero state response and causality, unit impulse response, convolution, convolution integral and properties, system stability. Discrete time systems, difference equation, initial conditions and iterative solution, zeroinput response, unit impulse response, zero state response, discrete time convolution, properties of convolution sum, convolution examples, system stability, numerical convolutions. |

12 Hours

| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Transform domain representation of signals:</b><br>Fourier series representation of periodic signals,<br>symmetry and the exponential form of the Fourier<br>series, response to periodic inputs, Fourier transform,<br>properties, generalized Fourier transform.<br>Computations of output response via the Fourier<br>transform, analysis of ideal filters, amplitude<br>modulation, pulse amplitude modulation. Discrete time<br>Fourier transform, discrete Fourier transform, system<br>analysis via the DTFT and DFT.<br>12 hours | <b>Transform domain representation of signals:</b><br>Fourier series representation of periodic signals,<br>exponential form of the Fourier series, aperiodic signal<br>representation, Fourier transform, transforms of some<br>useful functions, properties, generalized Fourier<br>transform. Computations of output response via the<br>Fourier transform, analysis of ideal filters, amplitude<br>modulation, angle modulation. Discrete time Fourier<br>transform, discrete Fourier transform, system analysis<br>via the DTFT and DFT.<br>12 Hours |
| Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Electronic Measurements and Measuring techniques:         <ul> <li>A. D. Helfrick and W.D. Cooper</li> <li>Electrical and Electronic measurements and techniques:</li> <li>A. K. Shawney The educational and Technical Publications, New Delhi (1985)</li> <li>Biomedical digital signal procession: William J. Tompkins, Prentice hall of India Pvt. Ltd. (2000)</li> <li>Electronic Signals and Systems: Paul A. Lynn, English Language Book Society Macmillan (1986)</li> </ul> </li> </ol>                                     | <ol> <li>Electronic Measurements and Measuring<br/>techniques: A. D. Helfrick and W.D. Cooper</li> <li>Electrical and Electronic measurements and<br/>techniques: A. K. Shawney The educational<br/>and Technical Publications, New Delhi (1985)</li> <li>Biomedical digital signal procession: William<br/>J. Tompkins, Prentice hall of India Pvt. Ltd.<br/>(2000)</li> <li>Electronic Signals and Systems: Paul A. Lynn,<br/>English Language Book Society Macmillan<br/>(1986)</li> </ol>                                                             |
| Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Communication systems: Simon Haykin, Wiley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Communication systems: Simon Haykin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                                                                                           | <ul> <li>eastern Ltd. New Delhi (1983)</li> <li>2. Modern Communication Systems – Principles and<br/>Applications: Leon W. Couch II, Prentice Hall of India<br/>Pvt. Ltd., New Delhi (1998)</li> <li>3. Discrete time Signal procession –2nd Edition, A.V.<br/>Oppenhiem, R. W. Schafer and J. R. Buck, Prentice<br/>Hall, New Jersey (1999)</li> <li>4. Digital Signal Processing – A Computer Based<br/>approach : Sajith K. Mitra, Tata – McGraw Hill<br/>Publications, New Delhi (2000)</li> <li>5. Principles of Electronic Instrumentation : A. J.<br/>Diefenderfer, and B.E. Hotton, Saunders college<br/>Publishing, London (1994)</li> </ul>                                                                                                                                           | <ul> <li>Wiley eastern Ltd. New Delhi (1983)</li> <li>2. Modern Communication Systems – Principles<br/>and Applications: Leon W. Couch II, Prentice<br/>Hall of India Pvt. Ltd., New Delhi (1998)</li> <li>3. Discrete time Signal procession –2nd Edition,<br/>A.V. Oppenhiem, R. W. Schafer and J. R.<br/>Buck, Prentice Hall, New Jersey (1999).</li> <li>4. Digital Signal Processing – A Computer Based<br/>approach : Sajith K. Mitra, Tata – McGraw<br/>Hill Publications, New Delhi (2000).</li> <li>5. Principles of Electronic Instrumentation : A. J.<br/>Diefenderfer, and B.E. Hotton, Saunders<br/>college Publishing, London (1994).</li> </ul>                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T303<br>(Course PHST<br>3.3): Condensed<br>Matter Physics –<br>II<br>Teaching hours per<br>week: 4<br>No of Credit: 4 | <ul> <li>Unit – I</li> <li>Ferromagnetism : Review of Weiss theory of ferromagnetism, its successes and failures, Heisenberg exchange interaction, exchange integral, exchange energy, Ising model, Spin waves (one dimensional case only), quantization of spin waves and magnons, density of modes, thermal excitation of magnons and Bloch T3/2 law, specific heat using spin wave theory. Band theory of ferromagnetism. Ferromagnetic domains, hysteresis curve, magnetocrystalline anisotropy energy, Bloch wall.</li> <li>Antiferromagnetism : Characteristic property of antiferromagnetic substance, Neutron diffraction experiment. Two sub-lattice model molecular field theory of antiferromagnetism, Neel temperature, Susceptibility below and above Neel temperature.</li> </ul> | <ul> <li>Unit I</li> <li>Ferromagnetism: Review of Weiss theory of ferromagnetism, its successes and failures, Heisenberg exchange interaction, exchange integral, exchange energy, spin waves (one dimensional case only), quantization of spin waves and magnons, density of modes, thermal excitation of magnons and Bloch T<sup>3/2</sup> law, specific heat using spin wave theory. Origin of ferromagnetic domains, hysteresis curve, magnetocrystalline anisotropy energy, Bloch wall formation.</li> <li>Antiferromagnetism: Characteristic property of antiferromagnetic substance, Neutron diffraction experiment. Two sub lattice model molecular field theory of antiferromagnetism, Neel temperature, Susceptibility below and above Neel temperature.</li> </ul> |

| <b>Ferrimagnetism:</b> Ferrimagnetic order, ferrites, Curie temperature and susceptibility of ferrimagnets.<br>12 hours                                                                                                                                                                                                                                                                                                                                                                           | <b>Ferrimagnetism:</b> Ferrimagnetic order, ferrites, Curie temperature and susceptibility of ferrimagnets.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Magnetic Resonance : Basic principles of<br>paramagnetic resonance, spin-spin and spin-lattice<br>relaxation, susceptibility in a.c. magnetic field power<br>absorption, equations of Bloch, steady state solutions,<br>determination of g-factor, line width and spin -lattice<br>relaxation time, paramagnetic resonance and nuclear<br>magnetic resonance.<br>Effect of crystal field on energy levels of magnetic ions<br>(qualitative). Spin- Hamiltonian, zero field splitting.<br>12 hours | Magnetic Resonance: Basic principles of<br>paramagnetic resonance, spin spin and spin–lattice<br>relaxation, susceptibility in a.c. magnetic field power<br>absorption, equations of Bloch, steady state solutions,<br>determination of g factor, line width and spin –lattice<br>relaxation time, electron paramagnetic resonance and<br>nuclear magnetic resonance.<br>Effect of crystal field on energy levels of magnetic<br>ions (qualitative). Spin Hamiltonian, zero field<br>splitting. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Novel Magnetic Materials and Devices:</b> Magneto<br>optic effect: Kerr and Faraday. The basic concepts of<br>Giant Magnetoresistance (GMR) and Colossal<br>Magnetoresistance (CMR), applications to memory<br>storage, actuators and sensors.<br>12 Hours                                                                                                                                                                                                                                   |
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Dielectrics :</b> Review of basic formulae, dielectric<br>constant and polarizability, local field, Clausius-<br>Mossotti relation, polarization catatrophe. Sources of<br>polarizability, Dipolar polarizability : dipolar<br>dispersion, Debye's equations, dielectric loss, dipolar<br>polarization in solids, dielectric relaxation. Ionic<br>polarizability. Electronic polarizability: classical                                                                                         | <b>Dielectrics:</b> Review of basic formulae, dielectric<br>constant and polarizability, local field, Clausius<br>Mossotti relation, polarization catastrophe. Sources of<br>polarizability, Dipolar polarizability: dipolar<br>dispersion, Debye's equations, dielectric loss, dipolar<br>polarization in solids, dielectric relaxation. Ionic<br>polarizability. Electronic polarizability: classical                                                                                         |

| treatment, quantum theory, interband transitions in solids. 12 hours                                                                                                                                                                                                                                                                                                                                                                                                     | treatment, quantum theory, interband transitions in solids.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit -IV<br>Ferroelectrics : General properties of ferroelectrics,<br>classification and properties of representative<br>ferroelectric crystals, dipole theory of ferroelectricity,<br>dielectric constant near Curie temperature, microscopic<br>source of ferroelectricity, Lyddane –Sachs-Teller<br>relation and its implications, thermodynamics of<br>ferroelectric phase transition, ferrroelectric domains,<br>Piezoelectricity and its applications.<br>12 hours | Unit IV<br>Ferroelectrics: General properties of ferroelectrics,<br>classification and properties of representative<br>ferroelectric crystals, dipole theory of ferroelectricity,<br>dielectric constant near Curie temperature,<br>microscopic source of ferroelectricity, Lyddane –<br>Sachs Teller relation and its implications,<br>thermodynamics of ferroelectric phase transition,<br>ferrroelectric domains, piezoelectricity and its<br>applications.                                                                                                                                                                                     |
| <ul> <li>Text Books</li> <li>1. The Physical Principles of Magnetism : A. H. Morrish, John Wiley &amp; sons, New York (1965)</li> <li>2. Solid State Physics : A. J. Dekker, Macmillan India Ltd., Bangalore (1981)</li> <li>3. Introduction to Solid State Physics : 5th Edn C. Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>4. Elementary Solid State Physics : M. A. Omar, Addison-Wesley Pvt. Ltd., New Delhi (2000)</li> </ul>                             | <ol> <li>12 Hours</li> <li>Text Books</li> <li>1. The Physical Principles of Magnetism : A. H.<br/>Morrish, John Wiley &amp; sons, New York (1965)</li> <li>2. Solid State Physics : A. J. Dekker, Macmillan<br/>India Ltd., Bangalore (1981)</li> <li>3. Introduction to Solid State Physics : 5th Edn C.<br/>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>4. Elementary Solid State Physics : M. A. Omar,<br/>Addison Wesley Pvt. Ltd., New Delhi (2000).</li> <li>5. Elements of Solid State Physics, Second<br/>Edition, J.P. Srivastava, Eastern Economy<br/>Edition, PHI Learning Private Limited, New<br/>Delhi (2009).</li> </ol> |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                                                                                                                                            | <ol> <li>Introduction to Magnetic Resonance: A. Carrington<br/>and A. D. Mclachlan, Harper &amp; Row, New York,<br/>(1967).</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi (2009)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Introduction to Magnetic Resonance: A.<br/>Carrington and A. D. Mclachlan, Harper &amp;<br/>Row, New York, (1967).</li> <li>Elements of Solid State Physics (2nd Ed):<br/>J.P. Srivastava, PHI Learning Pvt. Ltd.,<br/>New Delhi (2009)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T303<br>(Course PHST<br>3.3): Atomic &<br>Molecular<br>Physics -II<br>(Spectroscopy<br>Instrumentation<br>Techniques)<br>Teaching hours per<br>week: 4<br>No of Credits per<br>week: 4 | <ul> <li>Unit I</li> <li>Components of Optical Instruments Sources of radiation; Monochromators; Radiation Transducers: Types - Photon (photovoltaic, vacuum phototube, PMT); Multichannel (Photodiode arrays, CID, CCD); Thermal Transducers(Thermocouples, Bolometers, Pyroelectric). Principles of FT optical measurements.</li> <li>Atomic Absorption and Fluorescence Spectrometry Sources of flames; Instrumentation: Single and Double beam instruments. Sampling techniques. Simple applications.</li> <li>Atomic Emission Spectrometry Sources; Typical spectrometers; sampling techniques. Arc and spark sources; instrumentation.</li> <li>Iunit II</li> </ul> | <ul> <li>Unit I</li> <li>Components of Optical Instruments: Sources of radiation for uv, visible and IR regions; types of prism and grating monochromators; Radiation detector types Photon (photovoltaic, vacuum phototube, PMT); Multichannel types Photodiode arrays, CID, CCD; Thermal detectors Thermocouples, Bolometer, Pyrroelectric types. Principles of FT optical measurements.</li> <li>Atomic Spectroscopy Atomic Absorption Spectrometry: Sources of flames; Instrumentation: Single and Double beam instruments. Sampling techniques. Simple applications.</li> <li>Atomic Emission Spectrometry: Sources; Typical spectrometers; sampling techniques. Arc and spark sources; instrumentation.</li> <li>Unit II</li> </ul> |
|                                                                                                                                                                                            | UV/Visible Molecular Absorption Spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Luminescence Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Beer's law and its limitations. Instrumentation:<br>sources; single and double beam spectrometers;<br>Solvent-effects; Bathochromic and Hypsochromic<br>shifts; Assignment of $\sigma$ and $\pi$ transitions.<br><b>Molecular Luminescence Spectrometry</b> Fluorescence<br>and Phosphorescence (with energy level diagram);<br>Transition types; quantum efficiency (yield).<br>Instruments: Fluorometers and Spectrofluorometers;<br>lifetime measurements, Radiative and Natural lifetime,<br>Decay curves. Applications.<br>12 hours                                       | <ul> <li>UV Visible Absorption Spectrometry: The Beer's law and its limitations. Instrumentation: sources; single and double beam spectrometers; Solvent effects; Bathochromic and Hypsochromic shifts; Assignment of and transitions.</li> <li>Fluorescence Spectrometry: Theory of Fluorescence and Phosphorescence (with energy level diagram); Transition types; quantum efficiency (yield). Instruments: Fluorometers and Spectrofluorometers; lifetime measurements, Radiative and Natural lifetime, Decay curves. Applications.</li> </ul>                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Infrared Spectrometry Molecular vibrations and<br/>Group frequencies. IR sources; transducers.<br/>Instruments: Dispersive and FT-based spectrometers;<br/>sample handling. Interpretation of spectra-structure<br/>correlations.</li> <li>Raman Spectroscopy Origin of Raman scattering<br/>(qualitative);comparison of vibrational Raman and<br/>infrared spectra; activity and intensity of Raman bands;<br/>depolarization ratio. Instrumentation; sources;<br/>dispersive and FT-based Raman spectrometers; sample<br/>handling. Simple applications.</li> </ul> | <ul> <li>Vibrational Spectroscopy</li> <li>Infrared Spectrometry: Molecular vibrations and Group frequencies. IR sources; transducers. Instruments: Dispersive and FT based spectrometers; sample handling. Interpretation of spectra structure correlations.</li> <li>Raman Spectrometry: Origin of Raman scattering (qualitative); comparison of vibrational Raman and infrared spectra; activity and intensity of Raman bands; depolarization ratio. Instrumentation; sources; dispersive and FT-based Raman spectrometers; sample handling. Simple applications.</li> </ul> |

| Unit                                                                                                     | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theor<br>magne<br>energy<br>spin-s<br>and i<br>NMR<br>applic<br><b>Photo</b><br>Exper<br>proces<br>UP ar | <b>ear Magnetic Resonance (NMR) Spectroscopy</b><br>by of NMR: Interaction between nuclear spin and<br>etic moment; resonance condition; population of<br>y levels. Relaxation processes: spin-lattice and<br>spin relaxations (qualitative). The chemical shift<br>ts correlation with molecular structure. Typical<br>spectrometers (cw/FT); sample handling. Simple<br>eations of 1H.NMR.<br><b>Delectron spectroscopy</b> Types - UPS and XPS.<br>simental method for UPS and XPS. Ionization<br>sses and Koopmans' theorem. Interpretation of<br>ad XP spectra with applications. | <ul> <li>NMR Spectroscopy</li> <li>Proton NMR Spectrometry: Theory of NMR:<br/>Interaction between nuclear spin and magnetic<br/>moment; resonance condition; population of energy<br/>levels. Relaxation processes: spin lattice and spin-spin<br/>relaxations (qualitative). The chemical shift and its<br/>correlation with molecular structure. Typical NMR<br/>spectrometers (cw/FT); sample handling. Simple<br/>applications of 1H.NMR.</li> <li>Photoelectron Spectroscopy: Types UPS and XPS.<br/>Experimental method for UPS and XPS. Ionization</li> </ul> |
|                                                                                                          | onian and Cassagrain optical telescopes, Hubble<br>Telescope.<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | processes and Koopmans' theorem. Interpretation of<br>UP and XP spectra with applications.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Text                                                                                                     | Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L. Me<br>CBS I<br>2. Spe<br>and S<br>3. Pri<br>Skogg<br>Pte. L<br>4. Op                                  | trumental Methods of Analysis: H. H. Willard, L.<br>errit, J. A. Dean and F. A. Settle, J. K. Jain for<br>Publishers (1986)<br>ectroscopy - Vols. 1 To 3 (Ed): B. P. Straughan<br>. Walker, Chapman & Hall, London (1976)<br>nciples of Instrumental Analysis (5th ed) : D. A.<br>g, F. J. Holler & T. A. Nieman, Harcourt Asia<br>td. (1998)<br>tical Electronics: A Ghatak & K. Thayagarajan,<br>dation Books, New Delhi (1991)                                                                                                                                                      | <ol> <li>Instrumental Methods of Analysis: H. H.<br/>Willard, L. L. Merrit, J. A. Dean and F. A.<br/>Settle, J. K. Jain for CBS Publishers (1986)</li> <li>Principles of Instrumental Analysis (5th Ed) :<br/>D. A. Skoog, F. J. Holler &amp; T. A. Nieman,<br/>Harcourt Asia Pvt. Ltd. (1998)</li> <li>Fundamentals of Molecular Spectroscopy : C.<br/>N. Banwell and E.M. McCash, Tata McGraw-<br/>Hill Co.,(4th revd Ed; 9th reprint, 2000).</li> </ol>                                                                                                            |

|                                             | <ul> <li>5. Introductory Astronomy &amp; Astrophysics: Zeilik &amp; Gregory, Sounders College Pub. (1978)</li> <li>6. Fundamentals of Molecular Spectroscopy: C. N. Banwell, Tata Mc Graw-Hill Co. (1983)</li> <li><b>Reference Books</b></li> <li>1. Raman Spectroscopy: D. A. Long, Mc Graw-Hill Intl. Co. (1977)</li> <li>2. Experimental Spectroscopy: R. A. Sawyer, Prentice-Hall, N. Y. (1951)</li> <li>3. Radio Exploration of the Planetary System: Alex G. Smith &amp; T. D. Cart, Affiiated East West, New Delhi (1968)</li> <li>4. Astronomy for Everybody: Robert H. Baker, Van Nostrand. N. Y. (1950)</li> <li>5. Astronomical Spectroscopy: A. D. Thackeray, Eyre &amp; Spottiswood Ltd. (1961)</li> <li>6. Spectroscopy (Atomic &amp; Molecular); Gurudeep Chatwal Sham Anand, Himalaya Pub. House (1987)</li> <li>7. Astronomy - Fundamentals and Frontiers: Robert Jastow and Malcolm H., John Wiley Sons</li> <li>8. The Planet Observer's Hand Book: Fred W. Price, Cambridge Univ Press (2000)</li> </ul> | <ul> <li>Reference Books</li> <li>1. Raman Spectroscopy: D. A. Long, McGraw Hill Intl. Co. (1977)</li> <li>2. Modern Spectroscopy (4th Ed): J.M. Hollas, John Wiley &amp; Sons Ltd, UK (2004)[Free soft copy available on Net].</li> </ul> |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | Cambridge Univ Press (2000)<br>9. An Introduction to Astrophysics: Baidarinath Basu,<br>Prentice Hall of India Ltd<br>10. Modern Spectroscopy (4th Ed): J.M. Hollas, John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |
|                                             | Wiley & Sons Ltd, UK (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                            |
| PG85T303<br>(Course PHST<br>3.3): Nuclear & | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit I                                                                                                                                                                                                                                     |
| Particle Physics –<br>II                    | <b>Scintillation detector:</b> Different types of scintillators, photomultiplier tubes, preamplifiers, amplifiers, single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Nuclear Detectors:</b> Scintillation detector, different types of scintillators, photomultiplier tubes; gain and                                                                                                                        |

| (Nuclear<br>Instruments and<br>Techniques)        | channel analysers, multichannel analyzer, NaI(TI)<br>gamma ray spectrometer, anthracene crystal beta<br>detector.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teaching hours per<br>week : 4<br>No of Credits:4 | Semiconductor detector; relation between applied<br>voltage and depletion layer thickness, Lithium drifted<br>germanium detector, High purity germanium detector,<br>Lithium drifted silicon detector, position sensitive<br>silicon detector. Principle and working of magnetic<br>spectrometer and Cherenkov detector<br>12 hours | and normal modes, Multichannel analyzer; various<br>types of ADC, memory, linear gate and working,<br>NaI(TI) gamma ray spectrometer; Calibration,<br>photopeak, compton edge and back scattered peak,<br>single escape and double escape peak. Role of<br>thickness of the crystal for detecting the radiation.                     |
|                                                   |                                                                                                                                                                                                                                                                                                                                     | Semiconductor Detector: Relation between applied<br>voltage and depletion layer thickness, Lithium drifted<br>germanium detector, High purity germanium detector,<br>Lithium drifted silicon detector, position sensitive<br>silicon detector. Principle and working of magnetic<br>spectrometer and Cherenkov detector.<br>12 Hours |
|                                                   | Unit – II                                                                                                                                                                                                                                                                                                                           | Unit II                                                                                                                                                                                                                                                                                                                              |
|                                                   | <ul><li>Accelerator : Basic components of accelerator, types of accelerations.</li><li>Ion sources : Duoplasmatron ion source and ECR ion source.</li></ul>                                                                                                                                                                         | <ul> <li>Particle Accelerators and Applications: Basic components of accelerator, types of accelerations, principles of operation.</li> <li>Ion sources: Duoplasmatron ion source and electron cyclotron resonance (ECR) ion source.</li> </ul>                                                                                      |
|                                                   | Accelerators : Principle and working of pelletron<br>accelerator, AVF cyclotron, RIB accelerator,<br>Microtron, Super Conducting Cyclotron, synchrotron<br>source.<br>Application of ion beams: Rutherford Backscattering                                                                                                           | Accelerators: Principle and working of electrostatic<br>accelerators, azimuthally varying field (AVF)<br>cyclotron and pelletron accelerator, RIB accelerator,<br>Microtron, Super Conducting Cyclotron, synchrotron<br>source.<br>Application of ion beams: Rutherford Backscattering                                               |

| Spectroscopy (RBS), Elastic Recoil Detection (ERD),<br>Nuclear Reaction Analysis (NRA),<br>12hours                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spectroscopy (RBS), Elastic Recoil Detection (ERD),<br>Nuclear Reaction Analysis (NRA).<br>12Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>X-ray Fluorescence Spectroscopy: X-ray<br/>Fluorescence; radiative transition, Auger transition,<br/>Coster-Kronig transitions, Energy and wavelength<br/>dispersive x-ray fluorescence spectrometers. Particle<br/>induced XRF, microXRF, Total XRF and their<br/>applications</li> <li>Positron Annihilation spectroscopy: Principles,<br/>positron sources and experimental arrangements,<br/>Angular correlation of annihilation radiation(<br/>ACAR),positron annihilation life time (PALT)<br/>measurement. Applications</li> </ul> | X – ray Fluorescence Spectroscopy: X ray<br>Fluorescence; Energy and wavelength dispersive X –<br>ray fluorescence spectrometers. microXRF, Total XRF<br>and their applications<br>Positron Annihilation Spectroscopy: Principles,<br>positron sources and experimental arrangements,<br>Angular correlation of annihilation radiation<br>(ACAR),positron annihilation life time (PALT)<br>measurement. Applications<br>Perturbed angular correlation (PAC): PAC sources,<br>experimental arrangement, magnetic dipole<br>interaction, electric quadruple interaction,<br>applications.<br>12 Hours |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Neutron Physics: Basic properties of neutron,<br>Production of neutrons, detection of neutrons (BF3 and<br>3He), Neutron diffraction( theory). Powder and single<br>crystal neutron diffraction. Neutron diffraction from<br>magnetic materials, polarization of neutrons, Small<br>Angle Neutron Scattering (SANS)Purturbed Gamma-Gamma Angualar Correlation(<br>PAC): PAC sources, experimental arrangement,                                                                                                                                     | <b>Neutron Physics:</b> Basic properties of neutron,<br>production of neutrons, detection of slow and fast<br>neutrons; BF3 counter and 3He based neutron<br>detector, scintillation detectors for fast neutrons,<br>detection of ultra high energy neutrons, cloud chamber<br>as a neutron detector, the crystal monochromator,<br>neutron diffraction (theory), powder and single crystal<br>neutron diffraction, neutron diffraction from magnetic<br>materials, neutron diffraction in fluids, reflection of                                                                                    |

| magnetic dipole interaction, electric quadrupole<br>interaction, applications of PAC 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neutrons, polarization of neutrons, small angle neutron<br>scattering (SANS).<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Atomic and Nuclear Physics volume II : S. N.<br/>Goshal, S. Chand and company (1998)</li> <li>Nuclear Radiation Detectors : S. S. Kapoor and V. S.<br/>Ramamurthy, Wiley Eastern Limited (1986)</li> <li>Techniques for Nuclear and Particle : W. R. Leo,<br/>Springer Verlag (1987).</li> <li>Radiation Detection and Measurement : Glenn. F.<br/>Knoll, John Wiley and sons (1989)</li> <li>Principles of Charged Particle Acceleration : S.<br/>Humphris, John Wiley (1986)</li> <li>Introduction to Neutron physics : L. F. Curtis, East<br/>west press (1958)</li> </ol> | <ol> <li>Atomic and Nuclear Physics volume II : S. N.<br/>Goshal, S. Chand and company (1998)</li> <li>Nuclear Radiation Detectors : S. S. Kapoor and<br/>V. S. Ramamurthy, Wiley Eastern Limited<br/>(1986)</li> <li>Techniques for Nuclear and Particle : W. R.<br/>Leo, Springer Verlag (1987).</li> <li>Radiation Detection and Measurement : Glenn.<br/>F. Knoll, John Wiley and sons (1989)</li> <li>Principles of Charged Particle Acceleration : S.<br/>Humphris, John Wiley (1986)</li> <li>Introduction to Neutron Physics: L. F. Curtis,<br/>East west press (1958)</li> <li>Nuclear Electronics: P.W. Nicholson, John<br/>Wiley &amp; Sons (1974)</li> <li>Experimental neutron scattering: B.T.M. Willis<br/>&amp; C.J. Carlie, Oxford University Press (2009)</li> <li>Introduction to Neutron Physics: L.F. Curtiss,<br/>East West Press (1969)</li> </ol> |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Introduction to Nuclear Physics : Herald A. Enge,<br/>Addison – Wesley (1983)</li> <li>Physics of Nuclei and Particles Vol-II : P. Marmier<br/>and E. Sheldon, Academic Press (1969)</li> <li>Nuclei and Particles (second edition) : E. Segre,</li> </ol>                                                                                                                                                                                                                                                                                                                    | <ol> <li>Introduction to Nuclear Physics : Herald A.<br/>Enge, Addison – Wesley (1983)</li> <li>Physics of Nuclei and Particles Vol II : P.<br/>Marmier and E. Sheldon, Academic Press<br/>(1969)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| <ul> <li>Benjamin (1977)</li> <li>4. Nuclear and Particle Physics : W. Burcham and M. jaobes, Addison Wesley (1998)</li> <li>5. Physics of Nuclei and Particles : P. Marmier and E. Sheldon Academic press (1970)</li> <li>6. Alpha, Beta and Gamma Spetroscopy : K Seighban Vol. I and II North Holland (1966)</li> <li>7. Experimental Techniques in Nuclear Physics: Dorin N. Poenaru, Walter Greiner- Walter de Gruyter, Berlin(1997)</li> <li>8. Experimental Neutron Scattering: BTM Willis and C J Calile- Oxford University Press (2009)</li> <li>9. Quantitative X-ray Fluorescence analysis : G. R. Lachance and F. Claisse John wiley and sons (1995)</li> <li>10 Ion Implantation Science and Technology : J. P. Ziegler, Academic Press (1988).</li> </ul> | <ol> <li>Nuclei and Particles (second edition) : E.<br/>Segre, Benjamin (1977)</li> <li>Nuclear and Particle Physics : W. Burcham and<br/>M. jaobes, Addison Wesley (1998)</li> <li>Physics of Nuclei and Particles : P. Marmier<br/>and E. Sheldon Academic press (1970)</li> <li>Alpha, Beta and Gamma Spetroscopy : K<br/>Seighban Vol. I and II North Holland (1966)</li> <li>Experimental Techniques in Nuclear Physics:<br/>Dorin N. Poenaru, Walter Greiner Walter de<br/>Gruyter, Berlin(1997)</li> <li>Experimental Neutron Scattering: BTM Willis<br/>and C J Calile Oxford University Press (2009)</li> <li>Quantitative X ray Fluorescence analysis: G.<br/>R. Lachance and F. Claisse John Wiley and<br/>sons (1995)</li> <li>Ion Implantation Science and Technology: J. P.<br/>Ziegler, Academic Press (1988).</li> <li>Nuclear electronics: Kowalski E., Springer<br/>Verlag, Berlin (1970)</li> <li>Nuclear Physics Experimental and theoretical,<br/>Hans H.S., New Age International Publishers<br/>(2001)</li> </ol> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T304 (Course PHET 3.4): Open Elective – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PG85T304 (Course PHET 3.4): Open Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Course II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (for students of other departments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (for students of other departments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PHET3.4a: Instrumental Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHET3.4a: Instrumental Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PHET3.4b: Physics of Nanomaterials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHET3.4b: Physics of Nanomaterials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                      | (Any one of the above will be offered)                                                                                                                                     | (Any one of the above will be offered)<br>Syllabus is given at the end                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Syllabus is given at the end                                                                                                                                               |                                                                                                                                                                  |
| PG85P305             |                                                                                                                                                                            |                                                                                                                                                                  |
| (Course<br>PHSP3.5): | 1. Square, triangular and ramp generation using op-<br>amp                                                                                                                 | 1. Square, triangular and ramp generation using op amp                                                                                                           |
| Electronics          | 2. Instrumentation amplifier - gain, CMRR and input                                                                                                                        | 2. Instrumentation amplifier gain, CMRR and                                                                                                                      |
| Practical– I         | impedance                                                                                                                                                                  | input impedance                                                                                                                                                  |
|                      | 3. Active notch and twin-T filter realization using Op-                                                                                                                    | 3. Active notch and twin T filter realization using                                                                                                              |
| Contact hours per    | Amp                                                                                                                                                                        | Op Amp                                                                                                                                                           |
| week: 4              | 4. Precision half wave and full wave rectifier using Op-                                                                                                                   | 4. Precision half wave and full wave rectifier                                                                                                                   |
| No of Credit: 4      | amp                                                                                                                                                                        | using Op amp                                                                                                                                                     |
|                      | 5. 2's complement adder and subtractor                                                                                                                                     | 5. 2's complement adder and subtractor                                                                                                                           |
|                      | 6. 4 – bit bidirectional shift register                                                                                                                                    | 6. 4 – bit bidirectional shift register                                                                                                                          |
|                      | (New experiments/assignments may be added)                                                                                                                                 | (New experiments/assignments may be added)                                                                                                                       |
|                      | References                                                                                                                                                                 | References                                                                                                                                                       |
|                      | 1. Operational Amplifier and Linear IC's: Robert F. Coughlin and Frederick F. Driscoll, PHI publications (1994).                                                           | <ol> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> </ol>                        |
|                      | <ol> <li>Op-Amps and linear Integrated Circuits: R<br/>Gayakwad, PHI publications, New Delhi (2000).</li> <li>Digital Principles and Applications: A.P. Malvino</li> </ol> | 2. Op Amps and linear Integrated Circuits: R<br>Gayakwad, PHI publications, New Delhi<br>(2000).                                                                 |
|                      | and D. Leach, TMH Publications (1991).                                                                                                                                     | 3. Digital Principles and Applications: A.P.<br>Malvino and D. Leach, TMH Publications                                                                           |
|                      | 4. Digital fundamentals – 8th edition: Thomas L Floyd,<br>Pearson Education (2003)                                                                                         | (1991).                                                                                                                                                          |
|                      | 5. Microelectronics Circuits: Adel S. Sedra and Kenneth C. Smith, Oxford University Press (1991).                                                                          | <ul> <li>4. Digital fundamentals – 8th edition: Thomas L<br/>Floyd, Pearson Education (2003)</li> <li>5. Mismolostropics, Circuita, Adol S. Sodra and</li> </ul> |
|                      | 6. Digital Computer fundamentals, Thomas C. Bartee, McGraw Hill Ltd. (1977).                                                                                               | 5. Microelectronics Circuits: Adel S. Sedra and<br>Kenneth C. Smith, Oxford University Press                                                                     |

| PG85P305                                                                                                                   | <ul> <li>7. Digital Logic and Computer Design: Morris Mano.<br/>Prentice Hall of India Pvt.Ltd New Delhi (2000).</li> <li>8. Logic Circuit Design: Alan W. Shaw, Sanders<br/>College Publication Company (1999).</li> </ul>                                                                                                                                                                                                                                                     | <ul> <li>(1991).</li> <li>6. Digital Computer fundamentals, Thomas C. Bartee, McGraw Hill Ltd. (1977).</li> <li>7. Digital Logic and Computer Design: Morris Mano. Prentice Hall of India Pvt.Ltd New Delhi (2000).</li> <li>8. Logic Circuit Design: Alan W. Shaw, Sanders College Publication Company (1999).</li> </ul>                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Course<br>PHSP3.5):<br>Condensed<br>Matter Physics<br>Practical – I<br>Contact hours per<br>week : 4<br>No of Credits : 4 | <ol> <li>Structure factor calculations</li> <li>d-spacing calculations</li> <li>Indexing of cubic systems</li> <li>Determination of Debye temperature by study of specific heat of metals</li> <li>Assignment using FORTRAN programming</li> <li>Calculation of relative integrated intensity</li> <li>Indexing of tetragonal systems</li> <li>Obtaining X-ray pattern for a given substance using X-ray diffractometer and indexing the pattern.</li> </ol>                    | <ol> <li>Structure factor calculations</li> <li>d spacing calculations</li> <li>Indexing of cubic systems</li> <li>Determination of Debye temperature by study<br/>of specific heat of metals</li> <li>Assignment using FORTRAN programming</li> <li>Calculation of relative integrated intensity</li> <li>Indexing of tetragonal systems</li> <li>Obtaining X ray pattern for a given substance<br/>using X ray diffractometer and indexing the<br/>pattern.</li> </ol> |
|                                                                                                                            | <ul> <li>(New experiments/assignments may be added)</li> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London<br/>(1968).</li> <li>4. Introduction to Solid State Physics : 5th Edn C.</li> </ul> | <ul> <li>(New experiments/assignments may be added)</li> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and L.E. Alexander, John Wiley and sons, New York.</li> <li>3. Interpretation of X ray powder diffraction pattern: H.P. Lipson and H. Steeple, Macmillan, London (1968).</li> </ul>                                                                       |

|                                                                                                                                           | <ul> <li>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>5. Elementary Solid State Physics : M. A. Omar,<br/>Addison-Wesley Pvt. Ltd., New Delhi (2000)</li> <li>6. Introduction to magnetochemistry: A. Earnshaw,<br/>Academic press, London (1968).</li> <li>7. Lab manuals.</li> </ul>                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Introduction to Solid State Physics : 5th Edn C.<br/>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>Elementary Solid State Physics : M. A. Omar,<br/>Addison Wesley Pvt. Ltd., New Delhi (2000)</li> <li>Introduction to magnetochemistry: A.<br/>Earnshaw, Academic press, London (1968).</li> <li>Lab manuals.</li> </ol>                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85P305<br>(Course -PHSP<br>3.5): Atomic &<br>Molecular<br>Physics Practical<br>-I<br>Contact hours per<br>week : 4<br>No of Credits : 4 | <ol> <li>Study of constant Deviation Spectrograph</li> <li>Study of Grating spectrograph</li> <li>Study of small Quartz Spectrograph</li> <li>Vibrational analysis of CN violet bands</li> <li>Study of Copper Spark Spectrum</li> <li>Spectrochemical analysis of Mixture</li> <li>Rotational analysis of HCl</li> <li>(New Experiments / Assignments may be added)</li> </ol>                                                                                                                                                                                                                                                     | <ol> <li>Study of Constant Deviation Spectrograph</li> <li>Study of Grating spectrograph</li> <li>Study of Small Quartz Spectrograph</li> <li>Vibrational analysis of CN violet bands</li> <li>Study of Copper Spark Spectrum</li> <li>Spectrochemical analysis of Mixture</li> <li>Rotational analysis of HCl</li> <li>(New Experiments / Assignments may be added)</li> </ol>                                                                                                                                         |
|                                                                                                                                           | <ol> <li>Reference Books</li> <li>1. Experimental Spectroscopy (3rd Edition): R. A. Sawyer. Dover Publication, Inc, New York (1963).</li> <li>2. Atomic Spectra and Atomic Structure (2nd Edition)         <ul> <li>G. Herzberg. Dover Publication New York (1944)</li> <li>3. Atomic Spectra – H.E. White, Mc Graw –Hill, New York (1934).</li> <li>4. A Course of Experiments with He-Ne Lasers (2nd Edition) : R. S. Sirohi. Wiley Eastern, New Delhi (1991).</li> <li>5. Lab. Manuals.</li> <li>6. Molecular Spectra &amp; Molecular Structure Vol. I : G. Herzberg, D. Van Nostrand Co, New York (1950)</li> </ul> </li> </ol> | <ol> <li>Reference Books         <ol> <li>Experimental Spectroscopy (3rd Edition): R.<br/>A. Sawyer. Dover Publication, Inc, New York<br/>(1963).</li> <li>Atomic Spectra and Atomic Structure (2nd<br/>Edition) – G. Herzberg. Dover Publication<br/>New York (1944)</li> <li>Atomic Spectra – H.E. White, Mc Graw –Hill,<br/>New York (1934).</li> <li>A Course of Experiments with He-Ne Lasers<br/>(2nd Edition) : R. S. Sirohi. Wiley Eastern,<br/>New Delhi (1991).</li> <li>Lab. Manuals.</li> </ol> </li> </ol> |

| 3.5): Practical<br>Nuclear &2. Attenuation beta particles-I<br>3. Verification of Mosley's lawspParticle Physics -<br>I2. Attenuation of Mosley's law2. A<br>4. Positron annihilationI5. Multvibrator circuit using transistors and IC 5554. Po<br>5. Multvibrator circuit using IC 4049Contact hours per<br>7. Attenuation gamma rays-I55<br>5. Magnetic beta ray spectrometer-INo of Credits : 49. Magnetic beta ray spectrometer-I8. CI10. Nuclear rotational studies9. Magnetic beta ray spectrometer-I0. Nuclear rotational studies9. Magnetic beta ray spectrometer-I8. C | alibration of NaI(Tl) scintillation                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. R.C coupled amplifier11. R12. R.C coupled amplifier12. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ectrometer<br>ttenuation beta particles I<br>erification of Mosley's law<br>ositron annihilation<br>fultvibrator circuit using transistors and IC |

|                      | 1. Experiments in Modern Physics : A. C. Melissions,    | 1. Experiments in Modern Physics : A. C.             |
|----------------------|---------------------------------------------------------|------------------------------------------------------|
|                      | Academic Press (NY) (1966)                              | Melissions, Academic Press (NY) (1966)               |
|                      | 2. Experiments in Nuclear Science, ORTEC                | 2. Experiments in Nuclear Science, ORTEC             |
|                      | Application Note. ORTEC, (1971)                         | Application Note. ORTEC, (1971)                      |
|                      | 3. (Available in Nuclear Physics Laboratory)            | 3. (Available in Nuclear Physics Laboratory)         |
|                      | 4. Practical Nucleonics : F. J. Pearson., and R.        | 4. Practical Nucleonics : F. J. Pearson., and R.     |
|                      | R.Osborne, E & F. N. Spon Ltd. London (1960)            | R.Osborne, E & F. N. Spon Ltd. London                |
|                      | 5. The Atomic Nucleus: R. D. Evans, Tata Mc Graw        | (1960)                                               |
|                      | Hill Pub. Comp. Ltd. (1960)                             | 5. The Atomic Nucleus: R. D. Evans, Tata Mc          |
|                      | 6. Nuclear Radiation Detectors : S. S. Kapoor and V. S. | Graw Hill Pub. Comp. Ltd. (1960)                     |
|                      | Ramamurthy, Wiely Eastern Limited (1986)                | 6. Nuclear Radiation Detectors : S. S. Kapoor and    |
|                      | 7. Experimental Nucleonics : E. Bleuler and G. J.       | V. S. Ramamurthy, Wiely Eastern Limited              |
|                      | Goldsmith, Rinehart & Co. Inc. (NY) (1958)              | (1986)                                               |
|                      | 8. A manual of experiments in reactor physics : Frank   | 7. Experimental Nucleonics : E. Bleuler and G. J.    |
|                      | A. Valente, Macmillan company (1963)                    | Goldsmith, Rinehart & Co. Inc. (NY) (1958)           |
|                      | 9. A practical introduction to electronic circuits :    | 8. A manual of experiments in reactor physics :      |
|                      | Martin Harthley Jones, Cambridge University Press       | Frank A. Valente, Macmillan company (1963)           |
|                      | (1977)                                                  | 9. A practical introduction to electronic circuits : |
|                      | 10. Integrated circuit projects : R. M. Marston, Newnes | Martin Harthley Jones, Cambridge University          |
|                      | Technical Books (1978)                                  | Press (1977)                                         |
|                      | 11. Semiconductor projects : R. M. Marston, A Newnes    | 10. Integrated circuit projects : R. M. Marston,     |
|                      | Technical Books (1978)                                  | Newnes Technical Books (1978)                        |
|                      | 12. Waveform generator projects : R. P. Marston, A      | 11. Semiconductor projects : R. M. Marston, A        |
|                      | Newnes Technical Books (1978)                           | Newnes Technical Books (1978)                        |
|                      |                                                         | 12. Waveform generator projects : R. P. Marston,     |
|                      |                                                         | A Newnes Technical Books (1978)                      |
| PG85P306             |                                                         |                                                      |
| (Course PHSP         | 1. Crystal oscillator and frequency division circuits   | 1. Crystal oscillator and frequency division         |
| 3.6): Electronics    | 2. Optical fiber experiments: Analog & digital          | circuits                                             |
| <b>Practical</b> –II | 3. Phase locked loop ICs and characteristics            | 2. Optical fiber experiments: Analog & digital       |
|                      | 4. Dual power supply using IC regulators.               | 3. Phase locked loop ICs and characteristics         |
| Contact hours per    | 5. Staircase generator using 4-bit counters             | 4. Dual power supply using IC regulators.            |
| week: 4              | 6. Decade counter with 7-segment display                | 5. Staircase generator using 4-bit counters          |

| No of Credit: 4                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6. Decade counter with 7-segment display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | (New experiments/assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (New experiments/assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | <ol> <li>Operational Amplifier and Linear IC's: Robert F.<br/>Coughlin and Frederick F. Driscoll, PHI publications<br/>(1994).</li> <li>Op-Amps and linear Integrated Circuits: R<br/>Gayakwad, PHI publications, New Delhi (2000).</li> <li>Digital Principles and Applications: A.P. Malvino<br/>and D. Leach, TMH Publications (1991).</li> <li>Digital fundamentals – 8th edition: Thomas L Floyd,<br/>Pearson Education (2003)</li> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C. Smith, Oxford University Press (1991).</li> <li>Digital Computer fundamentals, Thomas C. Bartee,<br/>McGraw Hill Ltd. (1977).</li> <li>Digital Logic and Computer Design: Morris Mano.<br/>Prentice Hall of India Pvt.Ltd New Delhi (2000).</li> <li>Logic Circuit Design: Alan W. Shaw, Sanders<br/>College Publication Company (1999).</li> </ol> | <ol> <li>Operational Amplifier and Linear IC's: Robert<br/>F. Coughlin and Frederick F. Driscoll, PHI<br/>publications (1994).</li> <li>Op Amps and linear Integrated Circuits: R<br/>Gayakwad, PHI publications, New Delhi<br/>(2000).</li> <li>Digital Principles and Applications: A.P.<br/>Malvino and D. Leach, TMH Publications<br/>(1991).</li> <li>Digital fundamentals – 8th edition: Thomas L<br/>Floyd, Pearson Education (2003)</li> <li>Microelectronics Circuits: Adel S. Sedra and<br/>Kenneth C. Smith, Oxford University Press<br/>(1991).</li> <li>Digital Computer fundamentals, Thomas C.<br/>Bartee, McGraw Hill Ltd. (1977).</li> <li>Digital Logic and Computer Design: Morris<br/>Mano. Prentice Hall of India Pvt.Ltd New<br/>Delhi (2000).</li> <li>Logic Circuit Design: Alan W. Shaw, Sanders</li> </ol> |
| PG85P306                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | College Publication Company (1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Course PHSP<br>3.6): Condensed<br>Matter Physics<br>Practical – II | <ol> <li>Hall effect and Hall mobility</li> <li>Determination of e/kB</li> <li>Susceptibility of paramagnetic substance by Gouy's method</li> <li>Specific heat of metals</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ol> <li>Hall effect and Hall mobility</li> <li>Determination of e/kB</li> <li>Susceptibility of paramagnetic substance by<br/>Gouy's method</li> <li>Specific heat of metals</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Contact hours per<br>week : 4<br>No of Credits : 4      | <ul> <li>5. Magnetoresistance of semiconductors</li> <li>6. Determination of Curie temperature of a ferromagnet.</li> <li>7. Electron spin resonance</li> <li>8. Resistivity by four probe method.</li> <li>9. Determination of elastic constants.</li> <li>10. Thermoluminescence studies of alkali halides by X-ray irradiations</li> <li>11. Size estimation of nanocrystals</li> </ul>                                                                                                                                                                                                                                                                    | <ol> <li>Magnetoresistance of semiconductors</li> <li>Determination of Curie temperature of a ferromagnet.</li> <li>Electron spin resonance</li> <li>Resistivity by four probe method.</li> <li>Determination of elastic constants.</li> <li>Thermoluminescence studies of alkali halides by X ray irradiations</li> <li>Size estimation of nanocrystals</li> </ol>                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | (New experiments/assignments may be added)<br>Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (New experiments/assignments may be added)<br>Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                         | <ol> <li>X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London<br/>(1968).</li> <li>Introduction to Solid State Physics : 5th Edn C.<br/>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>Elementary Solid State Physics : M. A. Omar,<br/>Addison-Wesley Pvt. Ltd., New Delhi (2000)</li> <li>Introduction to magnetochemistry: A. Earnshaw,<br/>Academic press, London (1968).</li> <li>Lab manuals.</li> </ol> | <ol> <li>X ray diffraction: B.D. Cullity, Addison<br/>Wesley, New York (1972).</li> <li>X ray diffraction procedures: H.P. Klug and<br/>L.E. Alexander, John Wiley and sons, New<br/>York.</li> <li>Interpretation of X ray powder diffraction<br/>pattern: H.P. Lipson and H. Steeple,<br/>Macmillan, London (1968).</li> <li>Introduction to Solid State Physics : 5th Edn C.<br/>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> <li>Elementary Solid State Physics : M. A. Omar,<br/>Addison Wesley Pvt. Ltd., New Delhi (2000)</li> <li>Introduction to magnetochemistry: A.<br/>Earnshaw, Academic press, London (1968).</li> <li>Lab manuals.</li> </ol> |
| PG85P306<br>(Course PHSP<br>3.6): Atomic &<br>Molecular | <ol> <li>Determination of screening constants for sodium<br/>doublets</li> <li>Vibrational analysis of AlO bands</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Determination of screening constants for<br/>sodium doublets</li> <li>Vibrational analysis of AlO bands</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| <b>Physics Practical</b> | 3. Zeeman Effect (Photographic method):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. Zeeman Effect (Photographic method):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - II                     | 4. Vibrational Analysis of I2 absorption bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. Vibrational Analysis of I2 absorption bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | 5. Verification of Lande's interval rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. Verification of Lande's interval rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Contact hours per        | 6. Verification of Beer's law using USB spectrometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6. Verification of Beer's law using USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| week: 4                  | 7. Optical fiber attenuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | spectrometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No of Credits : 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Optical fiber attenuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | (New Experiments / Assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (New Experiments / Assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | <ol> <li>Experimental Spectroscopy (3rd Edition): R. A.<br/>Sawyer. Dover Publication, Inc, New York (1963).</li> <li>Atomic Spectra and Atomic Structure (2nd Edition)<br/>– G. Herzberg. Dover Publication New York (1944)</li> <li>Atomic Spectra – H.E. White, Mc Graw –Hill, New<br/>York (1934).</li> <li>A Course of Experiments with He-Ne Lasers (2nd<br/>Edition) : R. S. Sirohi. Wiley Eastern, New Delhi<br/>(1991).</li> <li>Lab. Manuals.</li> <li>Molecular Spectra &amp; Molecular Structure Vol. I : G.<br/>Herzberg, D. Van Nastrand Co, New York (1950)</li> <li>Instrumental Methods of Analysis : H. H. Willard, L.<br/>L. Merrit, J. A. Dean and F. A. Settle, J. K. Jain for<br/>CBS Publishers (1986)</li> <li>The Identification of Molecular Spectra: R.W. B.<br/>Pears &amp; A. G. Gaydon, Wiley, New York (1961).</li> <li>Fiber Optic Laboratory Experiments: Joel Ng.</li> </ol> | <ol> <li>Experimental Spectroscopy (3rd Edition): R.<br/>A. Sawyer. Dover Publication, Inc, New York<br/>(1963).</li> <li>Atomic Spectra and Atomic Structure (2nd<br/>Edition) – G. Herzberg. Dover Publication<br/>New York (1944)</li> <li>Atomic Spectra – H.E. White, Mc Graw –Hill,<br/>New York (1934).</li> <li>A Course of Experiments with He-Ne Lasers<br/>(2nd Edition) : R. S. Sirohi. Wiley Eastern,<br/>New Delhi (1991).</li> <li>Lab. Manuals.</li> <li>Molecular Spectra &amp; Molecular Structure Vol.<br/>I : G. Herzberg, D. Van Nastrand Co, New<br/>York (1950)</li> <li>Instrumental Methods of Analysis : H. H.<br/>Willard, L. L. Merrit, J. A. Dean and F. A.<br/>Settle, J. K. Jain for CBS Publishers (1986)</li> <li>The Identification of Molecular Spectra: R.W.<br/>B. Pears &amp; A. G. Gaydon, Wiley, New York<br/>(1961).</li> <li>Eiber Optic Laboratory Experiments: Icel Ng</li> </ol> |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B. Pears & A. G. Gaydon, Wiley, New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| (Course PHSP       | 1. Attenuation beta particles-II                      | 1. Attenuation beta particles II                  |
|--------------------|-------------------------------------------------------|---------------------------------------------------|
| 3.6): Practical    | 2. Half life of Indium                                | 2. Half life of Indium                            |
| Nuclear &          | 3. Attenuation gamma rays-II                          | 3. Attenuation gamma rays II                      |
| Particle Physics – | 4. Compton Scattering                                 | 4. Compton Scattering                             |
| II                 | 5. Study of emitter follower circuit                  | 5. Study of emitter follower circuit              |
|                    | 6. FET amplifier                                      | 6. FET amplifier                                  |
| Contact hours per  | 7. Magnetic beta ray spectrometer-I I                 | 7. Magnetic beta ray spectrometer I I             |
| week:4             | 8. X-ray fluorescence studies                         | 8. X ray fluorescence studies                     |
| No of Credits : 4  | 9. Rutherford scattering                              | 9. Rutherford scattering                          |
|                    | 10. Pulse stretch and pulse delay using IC 74121      | 10. Pulse stretch and pulse delay using IC 74121  |
|                    | 11. Pulser: variable width and frequency using LM 310 | 11. Pulser: variable width and frequency using LM |
|                    | 12. Scale of two circuit                              | 310                                               |
|                    |                                                       | 12. Scale of two circuit                          |
|                    |                                                       |                                                   |
|                    | (New experiments/assignments may be added)            | (New experiments/assignments may be added)        |
|                    | Reference Books                                       | Reference Books                                   |
|                    |                                                       | Kelerence books                                   |

|                                                                             | <ul> <li>A. Valente, Macmillan company (1963)</li> <li>9. A practical introduction to electronic circuits :<br/>Martin Harthley Jones, Cambridge University Press<br/>(1977)</li> <li>10. Integrated circuit projects : R. M. Marston, Newnes<br/>Technical Books (1978)</li> <li>11. Semiconductor projects : R. M. Marston, A Newnes<br/>Technical Books (1978)</li> <li>12. Waveform generator projects : R. P. Marston, A<br/>Newnes Technical Books (1978)</li> </ul>                                                                                                                                              | <ul> <li>Goldsmith, Rinehart &amp; Co. Inc. (NY) (1958)</li> <li>8. A manual of experiments in reactor physics :<br/>Frank A. Valente, Macmillan company (1963)</li> <li>9. A practical introduction to electronic circuits :<br/>Martin Harthley Jones, Cambridge University<br/>Press (1977)</li> <li>10. Integrated circuit projects : R. M. Marston,<br/>Newnes Technical Books (1978)</li> <li>11. Semiconductor projects : R. M. Marston, A<br/>Newnes Technical Books (1978)</li> <li>12. Waveform generator projects : R. P. Marston,<br/>A Newnes Technical Books (1978)</li> </ul> |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | Semester – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semester – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PG85T401                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Course PHCT                                                                | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.1): Classical                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Electrodynamics<br>Teaching hours per<br>week: 4<br>Number of Credits:<br>4 | <b>Electrostatics:</b> Divergence and curl of electrostatic<br>field, Gauss law in integral and differential forms,<br>Poisson and Laplace equations, Boundary conditions<br>and uniqueness theorem, electrostatic potential energy<br>and energy density of a continuous charge distribution.<br>Multipole expansion of the potential and energy of a<br>localized charge distribution, monopole and dipole<br>terms, electric field of a dipole, dipole-dipole<br>interaction. Electrostatic fields in matter, polarization,<br>macroscopic field equations, electrostatic energy in<br>dielectric media.<br>12 hours | <b>Electrostatics:</b> Divergence and curl of electrostatic field, Gauss law in integral and differential forms, Poisson and Laplace equations, Boundary conditions and uniqueness theorem, electrostatic potential energy and energy density of a continuous charge distribution. Multipole expansion of the potential and energy of a localized charge distribution, monopole and dipole terms, electric field of a dipole, dipole dipole interaction. Electrostatic fields in matter, polarization, macroscopic field equations, electrostatic energy in dielectric media.                |
|                                                                             | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                             | <b>Magnetostatics:</b> Current density, continuity equation, magnetic field of a steady current, the divergence and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Magnetostatics:</b> Current density, continuity equation, magnetic field of a steady current, the divergence and                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| curl of <b>B</b> , Ampere's law, magnetic vector potential,<br>multipole expansion of vector potential of a localized<br>current distribution, magnetic moment. Torques and<br>forces on magnetic dipoles, effect of a magnetic field<br>on atomic orbits. Magnetic fields in matter,<br>macroscopic equations, magnetostatic boundary<br>conditions, magnetic scalar potential. Energy in the<br>magnetic filed.<br>12hours                                                                                                                                                              | curl of B, Ampere's law, magnetic vector potential,<br>multipole expansion of vector potential of a localized<br>current distribution, magnetic moment. Torques and<br>forces on magnetic dipoles, effect of a magnetic field<br>on atomic orbits. Magnetic fields in matter,<br>macroscopic equations, magnetostatic boundary<br>conditions, magnetic scalar potential. Energy in the<br>magnetic field.<br>12Hours                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Electrodynamics: Faraday law of induction, displacement current, Maxwell's equations. Vector and scalar potentials. Gauge transformations, Lorentz gauge, Coulomb gauge. Poynting's theorem and conservation of energy and momentum for a system of charged particles and electromagnetic fields.</li> <li>Electromagnetic Waves: Plane waves in non-conducting and conducting medium, skin depth. Linear and circular polarizations. Reflection and refraction of plane waves at a plane interface, total internal reflection, reflection from a surface of a metal.</li> </ul> | <ul> <li>Electrodynamics: Faraday law of induction, displacement current, Maxwell's equations. Vector and scalar potentials. Gauge transformations, Lorentz gauge, Coulomb gauge. Continuity equation, Poynting's theorem, momentum, Maxwell's stress tensor, conservation of energy and momentum in electromagnetic fields.</li> <li>Electromagnetic Waves: Propagation of waves in linear media, reflection and transmission at normal and oblique incidence, Electromagnetic waves in non conducting and conducting medium, skin depth, reflection at conducting surface.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wave guides: Fields at the surface and within a conductor, modes in rectangular wave guide, TE waves in a rectangular wave guide, Co axial transmission line and cylindrical cavities.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                      |
| Unit-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| <ul> <li>Wave guides: Fields at the surface and within a conductor, cylindrical cavities and wave guides, modes in rectangular wave guide.</li> <li>Electromagnetic radiation: Retarded Potentials. Radiation from an oscillating dipole, liner antenna. Lenard-Wiechert potentials, potentials for a charge in uniform motion, power radiated by an accelerated charge at low velocities, Larmor's formula , radiation from a charged particle with collinear velocity and acceleration, Bremsstrahlung radiation, radiation from a charged particle moving in a circular orbit, cyclotron and synchrotron radiation.</li> <li>Plasma Physics: Plasma behavior in magnetic field, plasma as a conducting fluid-magnetohydrodynamics, magnetic confinement-Pinch effect.</li> </ul> | Electromagnetic radiation: Retarded Potentials,<br>Lenard Wiechert potentials, fields of a moving point<br>charge.Electric dipole radiation, Magnetic dipole<br>radiation,Power radiated by a point charge, Larmor<br>formula, Power radiated by a point charge with<br>collinear velocity and acceleration, Bremsstrahlung<br>radiation, radiation from a charged particle moving in<br>a circular orbit, cyclotron and synchrotron radiation.<br>Plasma Physics: Plasma behavior in magnetic field,<br>plasma as a conducting fluid magnetohydrodynamics,<br>magnetic confinement Pinch effect.<br>12 Hours |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Classical Electrodynamics: J.D.Jackson , Wiley<br/>Eastern Ltd., Bangalore (1978)</li> <li>Introduction to Electrodynamics: D.J.Griffiths,<br/>Prentice Hall of India, Ltd., New Delhi (1995).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol> <li>Classical Electrodynamics: J.D.Jackson ,<br/>Wiley Eastern Ltd., Bangalore (1978)</li> <li>Introduction to Electrodynamics: D.J.Griffiths,<br/>Prentice Hall of India, Ltd., New Delhi (1995).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>Electromagnetics: B.B. Laud. Wiley Eastern Ltd.,<br/>Bangalore (1987)</li> <li>Classical Electromagnetic Radiation: J.B. Marion,<br/>Academic press, NewYork (1968).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>Electromagnetics: B.B. Laud. Wiley Eastern<br/>Ltd., Bangalore (1987)</li> <li>Classical Electromagnetic Radiation: J.B.<br/>Marion, Academic press, NewYork (1968).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 3. Classical Electrodynamics; S P Puri, Tata McGraw –                                       | 3. Classical Electrodynamics; S P Puri, Tata                                                                |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Hill Publishing Company Ltd., New Delhi, (1990).                                            | McGraw Hill Publishing Company Ltd., New Delhi, (1990).                                                     |
| Course PHCT 4.2: Quantum Mechanics – II                                                     | PG85T402 (Course PHCT 4.2): Statistical and<br>Thermal Physics                                              |
| Teaching hours per week: 4                                                                  | Therman Thysics                                                                                             |
| Credits per week : 4                                                                        | Teaching hours per week: 04                                                                                 |
|                                                                                             | No. of Credits: 04                                                                                          |
| Unit I                                                                                      | Unit I                                                                                                      |
| Linear Vector Algebra Vectors - Orthonormality,                                             |                                                                                                             |
| linear independence. Operators - Eigenvalues,                                               | Classical Statistics: Basic postulates of statistical                                                       |
| eigenvectors; Hermitian, Unitary and Projection                                             | mechanics, phase spaces, Liouville equation;                                                                |
| operators. Bra and Ket notation for vectors. The elements of Representation Theory. Idea of | concept of ensembles, postulate of equal a proiri probability; microstates and macrostates; general         |
| Measurements, Observables; and the Generalized                                              | expression for probability; canonical ensemble: most                                                        |
| Uncertainty relation. Coordinate and Momentum                                               | probable distribution of energies, thermodynamic                                                            |
| representations. Quantum Poisson Bracket.                                                   | relations in canonical ensemble; canonical partition<br>function; micro canonical ensemble; grand canonical |
| Quantum Dynamics: The Schrödinger and                                                       | ensemble, grand partition function. Partition function                                                      |
| Heisenberg pictures; Interaction picture; the                                               | for the system and for the particles, translational                                                         |
| Heisenberg equation of motion. Linear harmonic                                              | partition function; Gibbs paradox: Sackur-Tetrode                                                           |
| oscillator problem by matrix method. 12 hours                                               | equation; Boltzmann equipartition theorem; rotational partition function; vibrational contribution to       |
| 12 10015                                                                                    | thermodynamic quantities; electronic partition                                                              |
| Unit II                                                                                     | function.                                                                                                   |
| An auton Manuartan Commutation anticipations hateraa                                        | 12 Hours                                                                                                    |
| Angular Momentum Commutation relations between angular momentum operators. Eigen values and | Unit II                                                                                                     |
| Eigenvectors of <b>J2</b> , and <b>Jz</b> . Matrix elements for <b>J2</b> , <b>Jx</b> ,     |                                                                                                             |
| Jy, and Jz. Theory of addition of two angular                                               | Quantum Statistics: Postulates of quantum statistical                                                       |
| momenta; properties of Clebsch-Gordan coefficients                                          | mechanics, ideal quantum gases, quantum statistics in                                                       |
| (qualitative).                                                                              | classical limit, symmetric and antisymmetric wave                                                           |

| 12 hoursUnit IIIApproximation MethodsFirst-order stationaryperturbation theory for a degenerate case; the secularequation; applications: particle in a infinitely deeppotential well subject to perturbing potential and, Starkeffect in hydrogen atom; Second order perturbation                                                                                                                                        | functions for indistinguishable particles; Bose-Einstein<br>and Fermi-Dirac distributions, ideal Bose and Fermi<br>gases, their properties at high temperature and<br>densities, weak and strong degeneracy of perfect<br>gases, Bose-Einstein condensation, black body<br>radiation, phonons and specific heats of solids.<br>12 Hours<br><b>Unit III</b>               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| theory and its application to a linear harmonic<br>oscillator subject to a potential. W.K.B. approximation:<br>Connection formulas; application to a potential well<br>and alpha decay. The Variation method and its<br>application to the ground state of hydrogen atom and<br>helium atom.<br>12 hours                                                                                                                 | Fluctuations and Brownian motion: Fluctuations in<br>canonical, grand canonical and microcanonical<br>ensembles, number fluctuations in quantum gases.<br>Brownian motion: Langevin equation, random walk<br>problem. Diffusion: Einstein relation for mobility.<br>Time dependence of fluctuations: power spectrum,<br>spectral density; persistence and correlation of |
| Unit IV<br>Relativistic Quantum Mechanics Klein–Gordon<br>equation. Dirac's relativistic equation for a free                                                                                                                                                                                                                                                                                                             | fluctuations; Wiener-Khinchin theorem, Johnson<br>noise, Nyquist theorem; shot noise; Fokker-Planck<br>equation.<br>12 Hours                                                                                                                                                                                                                                             |
| particle: commutation relations and matrices for $\alpha$ and $\beta$ ; free-particle solutions; probability charge and current densities; positive and negative energy states; the spin of the Dirac particle, Zitterbewegung. Dirac equation in electromagnetic potentials and magnetic moment. Dirac equation for a central field; the hydrogen atom: energy levels and fine structure (without derivation). 12 hours | <b>Unit IV</b><br><b>Irreversible thermodynamics:</b> Reversible and irreversible processes, Onsager reciprocity relations and their derivations; thermoelectric phenomena, linear response theory, Kubo relations, fluctuation dissipation theorem; Saha theory of ionisation.                                                                                          |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Liquid helium:</b> phase diagram, superfluid properties,<br>two fluid model, thermo-mechanical, fountain and<br>mechano-caloric effects, quantum theory of superfluid                                                                                                                                                                                                 |

|                     | 1. Quantum Mechanics (2nd Edition) : L. I. Schiff,       | $^{3}$ He and mixture of $^{3}$ He- $^{4}$ He.                                                     |
|---------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                     | McGraw – Hill Co, New York (1955)                        | 12 Hours                                                                                           |
|                     | 2. Quantum Mechanics (Vol. I) : A. Messiah, North        | 12 110013                                                                                          |
|                     | Holland Pub Co, Amsterdam (1962)                         | Text books                                                                                         |
|                     | 3. Quantum Mechanics – Theory and Applications (3rd      |                                                                                                    |
|                     | Edition) : A. Ghatak and S. Lokanathan, Mac Millan       | 1. Statistical mechanics and properties of matter:                                                 |
|                     | India Ltd. New Delhi (1984)                              | Theory and applications: E.S.R. Gopal, John                                                        |
|                     | 4. A Text book of quantum Mechanics : P. M.              | Wiley & Sons, New York (1974).                                                                     |
|                     | Mathews and K. Venkateshan, Tata Mc Graw – Hill,         | 2. Statistical mechanics (3rded.): B.K.Agarwal                                                     |
|                     | New Delhi (1987)                                         | and M. Eisner, New Age International (P) Ltd.                                                      |
|                     | New Denn (1987)                                          | Publishers, New Delhi (2013).                                                                      |
|                     | Reference Books                                          | Tublishers, New Denn (2013).                                                                       |
|                     | Kelefence books                                          | Reference Books                                                                                    |
|                     | 1. The Principles of Quantum Mechanics (4th Edition)     | Kelerence Dooks                                                                                    |
|                     | : P.A.M. Dirac, Oxford Univ Press, New York (1958)       | 1. Fundamentals of statistical and thermal                                                         |
|                     | 2. Quantum Mechanics (1st Edition) : V. K.               | Physics: F.Reif, McGrawHill Ltd., New Delhi                                                        |
|                     | Thankappan, New Age Intl. Pvt Ltd., New Delhi            | (1965).                                                                                            |
|                     | (1985)                                                   | 2. Elementary statistical physics: C. Kittel, John                                                 |
|                     | 3. Quantum Mechanics : E. Merzbacher., John Wiley,       | Wiley & Sons, New York (1958).                                                                     |
|                     | New York (1970)                                          | 3. Statistical mechanics; Theory and applications;                                                 |
|                     | 4. Modern Quantum Mechanics : J. J. Sakurai, Addison     | S. Statistical incentances, Theory and applications,<br>S.K.Sinha, TMH Pub. Ltd., New Delhi(1990). |
|                     | Wesley, Massachusetts (1994)                             | 4. Statistical Thermodynamics: M.C. Gupta, New                                                     |
|                     | 5. Applied Quantum Mechanics: A.F.J Levi,                | Age Publishers (2nd ed.) (2010)                                                                    |
|                     | Cambridge Univ Press, 2003.                              | 5. Statistical Mechanics, R.K. Pathria& Paul D.                                                    |
|                     | Camonage Oniv Press, 2005.                               | Beale, Bufferworgh Heinemann (2nded.)                                                              |
|                     |                                                          | (2012)                                                                                             |
|                     |                                                          | 6. Fundamentals of Statistical Mechanics: B.B.                                                     |
|                     |                                                          | Laud, New Age International (2012)                                                                 |
| PG85T403            |                                                          | Laud, New Age mornational (2012)                                                                   |
| (Course PHST        | Unit – I                                                 | Unit I                                                                                             |
| 4.3): Electronics - |                                                          |                                                                                                    |
| III                 | <b>Microprocessor</b> Architecture: Introduction,        | <b>Microprocessor</b> Architecture: Introduction,                                                  |
|                     | microprocessor and its operations, architecture of 8085  | microprocessor and its operations, architecture of 8085                                            |
| L                   | interoprocessor and its operations, areinteetare or 0005 | mereprocessor and its operations, areinteetare or 0005                                             |

| Teaching hours per<br>week: 4<br>No. of credits: 4 | microprocessor, memory, input and output devices,<br>basic interfacing concepts, memory interfacing,<br>interfacing input and output devices.<br>12 hours                                                                                                                                                                                                                                                                                   | microprocessor, memory, input and output devices,<br>basic interfacing concepts, memory interfacing,<br>interfacing input and output devices.<br>12 Hours                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | <b>Programming of 8085 :</b> Introduction, instruction classification, instruction format, over view of instruction set of 8085, data transfer operations, arithmetic operations, logic operations, branch operation; Instructions for Looping, counting, and indexing, additional data transfer instructions, 16-bit arithmetic operation, logic operations: rotate, compare; stack, subroutine, conditional call and return instructions. | <b>Programming of 8085:</b> Introduction, instruction classification, instruction format, over view of instruction set of 8085, data transfer operations, arithmetic operations, logic operations, branch operation; Instructions for Looping, counting, and indexing, additional data transfer instructions, 16-bit arithmetic operation, logic operations: rotate, compare; stack, subroutine, conditional call and return instructions. |
|                                                    | Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                    | <b>Interfacing peripherals and applications:</b> The 8085 interrupt, multiple interrupts and priorities, additional 8085 interrupts: TRAP, RST 7.5, 6.5 and 5.5, triggering levels, additional I/O concepts, DMA; Interfacing A/D and D/A converters, handshaking and polling, the 8155 multipurpose programmable interfacing device; interfacing 7-segment display, the 8259 timer as square wave generator. 12 hours                      | Interfacing peripherals and applications: The 8085<br>interrupt, multiple interrupts and priorities, additional<br>8085 interrupts: TRAP, RST 7.5, 6.5 and 5.5,<br>triggering levels, additional I/O concepts, DMA;<br>Interfacing A/D and D/A converters, handshaking and<br>polling, the 8155 multipurpose programmable<br>interfacing device; interfacing 7-segment display, the<br>8259 timer as square wave generator.<br>12 Hours    |
|                                                    | Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | Microcontroller: 8051 architecture: 8051                                                                                                                                                                                                                                                                                                                                                                                                    | Microcontroller: 8051 architecture: 8051                                                                                                                                                                                                                                                                                                                                                                                                   |

|                      | microcontroller hardware-I/O pins, ports and circuits-<br>External memory-Counter and Timers-Serial data I/O<br>Interrupts. 8051 programming: instruction syntax-<br>moving data-logical operations-arithmetic operations-<br>branching instructions.<br>12 Hours                                                                                                                                       | microcontroller hardware-I/O pins, ports and circuits-<br>External memory-Counter and Timers-Serial data I/O<br>Interrupts. 8051 programming: instruction syntax-<br>moving data-logical operations-arithmetic operations-<br>branching instructions.<br>12 Hours                                                                                                                                       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Text books                                                                                                                                                                                                                                                                                                                                                                                              | Text books                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | <ol> <li>Microprocessor Architecture, Programming, and<br/>Applications with 8085/8080 A: Ramesh S. Gaonkar,<br/>New Age International Publishers Ltd.</li> <li>The 8051 Microcontroller, Architecture,<br/>Programming and Applications, Kenneth J Ayala,<br/>International Thompson Publishing.</li> </ol>                                                                                            | <ol> <li>Microprocessor Architecture, Programming,<br/>and Applications with 8085/8080 A: Ramesh<br/>S. Gaonkar, New Age International Publishers<br/>Ltd.</li> <li>The 8051 Microcontroller, Architecture,<br/>Programming and Applications, Kenneth J<br/>Ayala, International Thompson Publishing.</li> </ol>                                                                                        |
|                      | References books                                                                                                                                                                                                                                                                                                                                                                                        | References books                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | <ol> <li>Microcomputer theory and Applications:<br/>Rafiquzzaman Mohamed, John Wiley and Sons, New<br/>York (1987)</li> <li>Introduction to Microprocessors (3rd Edition):<br/>Aditya P. Mathur, Tata – Mc Graw – Hall Publishing<br/>Company Ltd., New Delhi (1989)</li> <li>The 8051 Microcontroller and Embedded systems:<br/>M.A. Mazidi, J.G. Mazidi, Pearson, Prentice Hall<br/>(2005)</li> </ol> | <ol> <li>Microcomputer theory and Applications:<br/>Rafiquzzaman Mohamed, John Wiley and<br/>Sons, New York (1987)</li> <li>Introduction to Microprocessors (3rd Edition):<br/>Aditya P. Mathur, Tata – Mc Graw – Hall<br/>Publishing Company Ltd., New Delhi (1989)</li> <li>The 8051 Microcontroller and Embedded<br/>systems: M.A. Mazidi, J.G. Mazidi, Pearson,<br/>Prentice Hall (2005)</li> </ol> |
| PG85T403             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Course<br>PHST4.3): | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                | Unit I                                                                                                                                                                                                                                                                                                                                                                                                  |

| III                |                                                                                                                                                                                                                                                   | semiconductors, band structure of real                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Intrinsic semiconductors: Carrier concentration,                                                                                                                                                                                                  | semiconductors. Intrinsic semiconductors: Carrier                                                                                                                                                                                     |
| Teaching hours per | Fermi energy, extrinsic semiconductors: Binding                                                                                                                                                                                                   | concentration, Fermi energy, extrinsic semiconductors:                                                                                                                                                                                |
| week: 4            |                                                                                                                                                                                                                                                   | Binding energy of impurity, impurity levels,                                                                                                                                                                                          |
| No. of Credit: 4   |                                                                                                                                                                                                                                                   | Population of impurity levels, carrier concentration,                                                                                                                                                                                 |
|                    | and its dependence on impurity concentration and                                                                                                                                                                                                  | Fermi energy and its dependence on impurity                                                                                                                                                                                           |
|                    | temperature.                                                                                                                                                                                                                                      | concentration and temperature.                                                                                                                                                                                                        |
|                    | 12 hours                                                                                                                                                                                                                                          | 12 Hours                                                                                                                                                                                                                              |
|                    | Unit – II                                                                                                                                                                                                                                         | Unit II                                                                                                                                                                                                                               |
|                    | <b>Transport in Semiconductors:</b> Electrical conductivity<br>and mobility, their dependence on temperature and<br>scattering mechanisms, energy gap determination.<br>Diffusion, Einstein relation, diffusion equation and<br>diffusion length. | <b>Transport in Semiconductors:</b> Electrical conductivity and mobility, their dependence on temperature and scattering mechanisms, energy gap determination. Diffusion, Einstein relation, diffusion equation and diffusion length. |
|                    | <b>Magnetic Field Effects:</b> Hall effect, Hall resistance, magnetoresistance (qualitative), cyclotron resonance and effective mass determination.                                                                                               | <b>Magnetic Field Effects:</b> Hall effect, Hall resistance, magnetoresistance (qualitative), cyclotron resonance and effective mass determination.                                                                                   |
|                    | <b>Optical Properties:</b> Interband and intraband absorption, fundamental absorption, absorption edge, exciton absorption, free carrier absorption, impurity involved absorption. Photoconductivity, luminescence. 12 hours                      | <b>Optical Properties:</b> Interband and intraband absorption, fundamental absorption, absorption edge, exciton absorption, free carrier absorption, impurity involved absorption. Photoconductivity, luminescence. 12 Hours          |
|                    | Unit – III                                                                                                                                                                                                                                        | Unit III                                                                                                                                                                                                                              |
|                    | <b>Semiconductor Devices :</b> p-n junction in equilibrium :                                                                                                                                                                                      | Low-dimensional semiconductor structures: Metal-                                                                                                                                                                                      |
|                    | Space charge region, barrier potential, barrier                                                                                                                                                                                                   | oxide-semiconductor junction, Inversion layer,                                                                                                                                                                                        |
|                    | thickness, contact field, junction capacitance and its                                                                                                                                                                                            | quantum well. Modulation doping, quantum well wire,                                                                                                                                                                                   |
|                    | determination, potential diagram of p-n junction.                                                                                                                                                                                                 | quantum dot and superlattice. Two – dimensional                                                                                                                                                                                       |

| <b>p-n junction in non – equilibrium:</b> generation and recombination current. Continuity equations, current voltage relation, saturation current, tunnel diode, Gunn diode, semiconductor lasers, LED and photocell. 12 hours                                                                                                                                                                                                                                                                                                                                                                                   | electron gas, energy levels and density of states.<br>Quantum Hall effect (qualitative)<br>Thin Film Physics: Preparation : Thermal<br>evaporation spray pyrolysis and spin coating.Epitaxial<br>growth and Chemical vapor deposition, methods.<br>MBE, MOCVD, Thickness measurements: Electrical<br>methods, (resistivity and capacitance measurements),<br>Optical methods (optical absorption and interference)<br>and vibrating quartz crystal method.                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 Hours<br>Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Low-dimensional semiconductor structures:<br/>Inversion layer, quantum well. Modulation doping,<br/>quantum well wire, quantum dot and superlattice. Two<br/>– dimensional electron gas, energy levels and density<br/>of states. Quantum Hall effect (qualitative)</li> <li>Thin Film Physics : Preparation : Chemical vapor<br/>deposition, MOCVD, MBE and thermal evaporation<br/>methods.</li> <li>Thickness measurements: Electrical methods,<br/>(resistivity and capacitance measurements), Optical<br/>methods (optical absorption and interference) and<br/>vibrating quartz method.</li> </ul> | Semiconductor Devices: p-n junction in e Metal-<br>oxide-semiconductor junction quilibrium : Space<br>charge region, barrier potential, barrier thickness,<br>contact field, junction capacitance and its<br>determination, potential diagram of p-n junction. p-n<br>junction in non – equilibrium: generation and<br>recombination current. Continuity equations, current<br>voltage relation, saturation current, tunnel diode, Gunn<br>diode, semiconductor lasers, LED and photocell.<br>12 Hours |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1) Elementary Solid State Physics: M.A. Omar,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. Solid State and Semiconductor Physics : J. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                         | <ul> <li>Addison – Wesley Pvt.Ltd., New Delhi (1993).</li> <li>2) Solid State and Semiconductor Physics : J. P. McKelvey, Harper and Row, New York (1966)</li> <li>3) Solid State Physics: N. W. Aschroft and A. S. Mermin, Saunders College Publishing, New York (1976).</li> <li>4) The Physics of Low Dimensional Semiconductors: J. H. Davies. Cambridge University press, (1998).</li> <li>5) Physics of Thin Films: L. Eckertova, Cambridge University Press, Cambridge (1998).</li> </ul> | <ul> <li>McKelvey, Harper and Row, New York (1966)</li> <li>2. Solid State Physics: N. W. Aschroft and A. S. Mermin, Saunders College Publishing, New York (1976).</li> <li>3. The Physics of Low Dimensional Semiconductors: J. H. Davies. Cambridge University press, (1998).</li> <li>4. Elementary Solid State Physics: M.A. Omar, Addison – Wesley Pvt.Ltd., New Delhi (1993).</li> <li>5. Thin Film Phenomena: K. L. Chopra. Mc Graw – Hill Book Company, New York (1969).</li> </ul> |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | <ol> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi (2009)</li> <li>Thin Film Phenomena: K. L. Chopra. Mc Graw –<br/>Hill Book Company, New York (1969).</li> </ol>                                                                                                                                                                                                                                                                        | <ol> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi<br/>(2009)</li> <li>Physics of Thin Films: L. Eckertova,<br/>Cambridge University Press, Cambridge<br/>(1998).</li> </ol>                                                                                                                                                                                                                                                         |
| PG85T403 (Course<br>PHST 4.3):                                          | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Atomic and<br>Molecular<br>Physics - III<br>(Molecular<br>Spectroscopy) | <b>Molecular Symmetry:</b> Point Groups, symmetrically equivalent atoms ; simple triatomic molecules (C2v, C3v).                                                                                                                                                                                                                                                                                                                                                                                 | Molecular Symmetry: Point Groups, symmetrically<br>equivalent atoms.<br>Rotational Spectra: Classification of molecules as<br>rotors: Linear, Symmetric top, Spherical top,                                                                                                                                                                                                                                                                                                                 |
| Teaching hours per<br>week: 4<br>No. of credits: 4                      | Rotational Spectra: Classification of molecules as<br>rotors : Linear, Symmetric top, Spherical top,<br>Asymmetric top molecules. Energy levels : IR and<br>Raman spectra.<br>12 hours                                                                                                                                                                                                                                                                                                           | Asymmetric top molecules. Energy levels: thermal distribution, symmetry properties and statistical weights of rotational levels, Spectrum; IR and Raman spectra.<br>12 Hours                                                                                                                                                                                                                                                                                                                |

| PG85T403 (Course<br>PHST 4.3):<br>Atomic and<br>Molecular<br>Physics - III<br>(Molecular<br>Spectroscopy of<br>Polyatomic<br>molecules)<br>Teaching hours per<br>week: 4 | Unit – I<br>Molecular Vibrations: Separation of rotational and<br>vibrational motions; the secular equation for small<br>vibrations (classical treatment). Normal modes of<br>vibration. Normal coordinates. Simple illustrations.<br>Factorization of secular equation; determination of<br>number of normal co ordinates (symmetry species).<br>The Secular equation in symmetry co-ordinates. Simple<br>molecules (bent-symmetric XY2 / pyramidal XY3)<br>12 hours | Unit II<br>Molecular Vibrations: Separation of rotational and<br>vibrational motions; the secular equation for small<br>vibrations (classical treatment). Normal modes of<br>vibration. Normal coordinates. Simple illustrations.<br>Internal coordinates, symmetry co-ordinates,<br>determination of number of normal co ordinates<br>(symmetry species). Potential energy functions and<br>force fields.<br>12 Hours                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. of credits: 4                                                                                                                                                        | Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                          | <b>Vibrational Energy levels and Selection Rules:</b> The<br>Schrodinger's vibrational wave equation. Energy<br>levels, Vibrational Spectra and Degeneracy. Symmetry<br>properties of wave functions, overtones, combinations,<br>components of electric Dipole Moment, and the<br>Polarizability. Selection Rules for Infrared and Raman<br>Spectra. The rule of mutual exclusion. Group<br>frequencies; the Product rule ; Fermi resonance.<br>12 hours             | <b>Vibrational Energy levels and Selection Rules:</b> The<br>Schrodinger's vibrational wave equation. Energy<br>levels, Vibrational Spectra and Degeneracy. Symmetry<br>properties of wave functions, overtones, combinations,<br>components of electric dipole moment, and the<br>polarizability. Selection Rules for Infrared and Raman<br>Spectra. The rule of mutual exclusion. Group<br>frequencies; the Product rule; Fermi resonance.<br>12 Hours |
|                                                                                                                                                                          | Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                          | <b>Electronic Structure &amp; Spectra:</b> Classification of Electronic States based on angular momentum, spin, multiplet components. Types of electronic transitions; Allowed transitions, general selection rules, spin selection rules. Forbidden transitions: Magnetic and electric quadrupole transitions.                                                                                                                                                       | <b>Electronic Structure &amp; Spectra:</b> Classification of Electronic States based on angular momentum, spin, multiplet components. Types of electronic transitions; Allowed transitions, general selection rules, spin selection rules. Forbidden transitions: Magnetic and electric quadrupole transitions.                                                                                                                                          |

| 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| brations: E. Bright Wilson, J. C.<br>Cross, Dover Pub., Inc., N.Y.<br>to the theory of Molecular<br>d Vibrational Spectroscopy: L A<br>Clarendon Press, Lon, (1976)<br>Spectroscopy – Theory and<br>: D. N. Sathyanarayana, New Age<br>Pub., New Delhi (1996)<br>s of Molecular Spectroscopy: C.<br>Tata Mc Graw-Hill, New Delhi<br>Spectra and Molecular<br>.III)-Electronic Spectra &<br>ructure of Polyatomic Molecules :<br>D. van Nostrand & Co. N. J. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectra and Molecular<br>.II)-Infrared & Raman Spectra of<br>Molecules : G. Herzberg, D. Van<br>Co. N. J. (1945)<br>Molecules : Mitchel Weissbluth,<br>ess, N. Y. (1978)<br>roscopy: D. A. Long, McGraw-<br>77).<br>to Infrared and Raman                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                                                                                                                      | <ul> <li>Press, N. Y. (1975)</li> <li>5. Vibrating Molecules : P. Gans, Chapman &amp; Hall,<br/>London (1971)</li> <li>6. Vibration Spectra and Structure Vol. 4 : (Ed) J. R.<br/>Durig, Elsevier Sci. Pub. Co. N. Y. (1975).</li> </ul>                                                                                                                                                                                                                                                                                                                  | <ul> <li>Spectroscopy: N.B. Colthup, L. H. Daly and<br/>S.E. Wiberley, Academic Press, N. Y. (1975)</li> <li>5. Vibrating Molecules : P. Gans, Chapman &amp;<br/>Hall, London (1971)</li> <li>6. Vibration Spectra and Structure Vol. 4 : (Ed) J.<br/>R. Durig, Elsevier Sci. Pub. Co. N. Y. (1975).</li> <li>7. Microwave Spectroscopy: C.H.Townes and<br/>Arthur Schawlow, McGraw Hill, 1955.</li> </ul>                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T403<br>(Course PHST -<br>4.3): Nuclear &                                                                                        | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Particle Physics –<br>III<br>(Nuclear<br>Structure and<br>Nuclear<br>Reactions)<br>Teaching hours per<br>week: 4<br>No of Credits: 4 | <b>Shell Model:</b> Shell model for one nucleon outside core<br>: Energy levels according to the infinite square well<br>potential and harmonic oscillator potential, effect of<br>spin orbit interaction, prediction of ground state spin –<br>parity of odd A nuclei and odd-odd nuclei –<br>Nordhiem's rules magnetic moment of odd A nuclei<br>Configuration for excited states for two nucleons<br>outside the core-18 O spectrum (qualitative) for two<br>particles in d5/2 orbit and in the d5/2 –S ½ orbits,<br>configuration mixing.<br>12 hours | <ul> <li>Nuclear Models</li> <li>Shell model: evidences for nuclear shell structure-<br/>energy levels according to the infinite square well<br/>potential and harmonic oscillator potential, effect of<br/>spin orbit interaction, prediction of ground state spin –<br/>parity of odd A nuclei and odd-odd nuclei –<br/>Nordhiem's rules,</li> <li>Collective Model: Evidences for collective motion,<br/>vibrational energy levels of even nuclei. Rotational<br/>energy levels of deformed even-even nucleus, moment<br/>of inertia-rigid body value, back bending, spectrum of<br/>odd A nuclei,</li> </ul> |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nilsson model: Calculation of energy levels and<br>prediction of ground state.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                      | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                      | Collective Model: Evidences for collective motion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nuclear Reaction I: Comparison of features of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| vibrational energy levels of even nuclei. Rotational<br>energy levels of deformed even – even nucleus –<br>moment of inertia-rigid body value –back bending –<br>spectrum of odd A nuclei – Coriolis term. Beta and<br>lambda vibrations( qualitative).<br>Nilsonmodel : Calculation of energy levels and<br>prediction of ground state.<br>12 hours                                                                                                                                                                                                                                                                                      | compound nucleus model and direct reaction model.<br>Partial wave analysis of nuclear reactions, expressions<br>for scattering and reaction cross sections and their<br>interpretation – shadow scattering – resonance theory<br>of scattering and absorption – overlapping and isolated<br>resonance – Briet –Wigner formula for scattering and<br>reaction shape of cross section curve near a resonance.<br>Inverse nuclear reactions – principle of detailed<br>balance–optical model–mean free path – optical<br>potential and its parameters for elastic scattering.<br>12 Hours                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nuclear Reaction I: Comparison of features of<br>compound nucleus model and direct reaction model.<br>Partial wave analysis of nuclear reactions, expressions<br>for scattering and reaction cross sections and their<br>interpretation – shadow scattering – resonance theory<br>of scattering and absorption – overlapping and isolated<br>resonance – Briet –Wigner formula for scattering and<br>reaction shape of cross section curve near a resonance.<br>Inverse nuclear reactions – principle of detailed<br>balance – optical model –mean free path – optical<br>potential and its parameters for elastic scattering<br>12 hours | <ul> <li>Nuclear Reaction II: Transfer reactions – semi-<br/>classical description – plane wave Born approximation<br/>(PWBA) – its predictions of angular distributions –<br/>distorted wave Born approximation (DWBA)-<br/>spectroscopic factors – transfer reactions and the shell<br/>model.</li> <li>Heavy ion reactions: Importance of heavy ion<br/>reactions, Elastic scattering; critical angle, deflection<br/>function, Rainbow scattering and diffraction Nuclear<br/>and Coulomb scattering and its experimental results,<br/>compound nucleus formation, formation of nuclear<br/>molecule, fusion of heavy ions and formation of super<br/>heavy nuclei in heavy ion reactions.</li> </ul> |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <mark>Unit IV (Newly Added)</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nuclear Reaction II: Transfer reactions – semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Particle Physics: Weak interactions Weak decays,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| (PWBA) – its predictions of angular distributions –<br>distorted wave Born approximation (DWBA)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | neutral Kaons, the Ko Ko systems, regeneration of<br>short lived component of neutral kaons, lifetimes and<br>cross sections, Feynman diagrams, leptonic, semi<br>leptonic and non leptonic processes, verification of<br>electromagnetic and weak interactions intermediate<br>vector bosons, quark flavour changing interactions<br>with examples, muon decay – Fermi's four particle<br>coupling and modern perspective with a mediating<br>vectorboson, W and Z bosons; their masses and range<br>of weak interactions. Charged weak interactions of<br>quarks: Cabibbo factor, GIM mechanism (Glashow<br>lliopoulos Miani mechanism) Neutral kaons: CP as a<br>symmetry, CP violation in neutral kaon decay (Fitch<br>Cronin experiment), CPT theorem<br>(qualitative),evolution of a neutral kaon beam with<br>time, regeneration experiments.<br>12 Hours |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Text Books</li> <li>1. Nuclear Physics : Theory and Experiment : R.R.Roy and B. P. Nigam, Wiley Eastern Publications (1986)</li> <li>2. Atomic and Nuclear Physics volume II : S. N. Goshal, S. Chand and company (1998)</li> <li>3. Introductory Nuclear Physics : K. S. Krane, Wiley and sons (1988)</li> <li>4. Nuclear Reaction with heavy Ions : Reiner Bass, Springer – Verlag (1980)</li> <li>5. Heavy Ion Reaction : R. A. Broglia and Aage Winter, Addison Wesley (1991)</li> <li>6. Nuclear reaction : R. Sing and S. N. Mukherjee, New Age International (1996)</li> </ul> | <ol> <li>Text Books         <ol> <li>Nuclear Physics : Theory and Experiment :<br/>R.R.Roy and B. P. Nigam, Wiley Eastern<br/>Publications (1986)</li> <li>Atomic and Nuclear Physics volume II : S. N.<br/>Goshal, S. Chand and company (1998)</li> <li>Introductory Nuclear Physics : K. S. Krane,<br/>Wiley and sons (1988)</li> <li>Nuclear Reaction with heavy Ions : Reiner<br/>Bass, Springer – Verlag (1980)</li> <li>Heavy Ion Reaction : R. A. Broglia and Aage<br/>Winter, Addison Wesley (1991)</li> <li>Nuclear reaction : R. Sing and S. N.<br/>Mukherjee, New Age International (1996)</li> </ol> </li> </ol>                                                                                                                                                                                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7. Nuclear Physics Experimental & Theoretical:<br>H.S. Hans, New Age International, (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ol> <li>Subatomic Physics : Nuclei and Particles (Volume<br/>II) : Luc Valentin North Holland (1981)</li> <li>Subatomic Physics (Second Edition) : Hans<br/>Frauenfelder and E. M. Henley, Prentice Hall (1991)</li> <li>Introduction to Nuclear Physics : Herald. A. Enge<br/>Addison-Wesley (1983)</li> <li>Introduction to Nuclear Physics : Samuel S. M.<br/>Wong Prentice – Hall (1996)</li> <li>Atomic Nucleus : R. D. Evans, Tata McGraw-Hill<br/>(1982)</li> <li>Theoretical Nuclear Physics Volume I : Nuclear<br/>structure : Amos de Shalit and Herman Feshbach, John<br/>Wiley (1974)</li> <li>Nuclear and Particle Physics: W. Burcham and M.<br/>Jobes, Addison – Wesley (1998).</li> </ol> | <ol> <li>Subatomic Physics : Nuclei and Particles<br/>(Volume II) : Luc Valentin North Holland<br/>(1981)</li> <li>Subatomic Physics (Second Edition) : Hans<br/>Frauenfelder and E. M. Henley, Prentice Hall<br/>(1991)</li> <li>Introduction to Nuclear Physics : Herald. A.<br/>Enge Addison-Wesley (1983)</li> <li>Introduction to Nuclear Physics : Samuel S. M.<br/>Wong Prentice – Hall (1996)</li> <li>Atomic Nucleus : R. D. Evans, Tata McGraw-<br/>Hill (1982)</li> <li>Theoretical Nuclear Physics Volume I :<br/>Nuclear structure : Amos de Shalit and Herman<br/>Feshbach, John Wiley (1974)</li> <li>Nuclear and Particle Physics: W. Burcham and<br/>M. Jobes, Addison – Wesley (1998).</li> <li>Introduction to Elementary Particles, D.<br/>Griffiths: John Wiley, 1987.</li> <li>Quarks and Leptons, F. Halzen&amp;A.D. Martin,<br/>John Wiley &amp; Sons, New York, 1984.</li> <li>Unitary Symmetry and Elementary Particles,<br/>D. B. Lichtenberg:2nd edition, Academic<br/>Press, 1978.</li> <li>Elementary Particles, J. M. Longo:II edition,<br/>Mc Graw-Hill, New York, 1973.</li> <li>Particles and Nuclei: Povh, Rith, Scholz,</li> </ol> |

|                                                 |                                                                                                                                                                                                                                                                                                    | <ul> <li>13. Subatomic Physics: Hans Frauenfelder and<br/>Ernest M. Henley, Prentice Hall (1991)</li> <li>14. Introduction to High Energy Physics: Donald<br/>H. Perkins, Addison Wesley Publishing,<br/>(1987)</li> </ul>                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85T404<br>(Course PHST<br>4.4): Electronics – | Unit – I                                                                                                                                                                                                                                                                                           | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IV<br>Teaching hours per<br>week: 4             | <b>Amplitude Modulation:</b> Spectrum of Amplitude Modulated signal, power relations AM generation and detection, DSB-SC generation and detection, SSB-SC generation and detection, VSB modulation, AM                                                                                             | Amplitude Modulation: Amplitude Modulation,<br>Theory, Frequency spectrum of the AM wave,<br>Representation of AM, Power relations in the AM<br>wave, Generation of AM, Basic requirements,                                                                                                                                                                                                                                                                                                  |
| No. of credits: 4                               | transmitter and receiver, TRF and super-heterodyne<br>receivers, Noise analysis of AM receivers, ANR for<br>envelope detection and coherent detection, SNR in<br>DSBSC and SSBSC systems.<br>12 Hours                                                                                              | Modulated transistor amplifiers, Single Sideband<br>Techniques, Evolution and Description of SSB,<br>Suppression of Carrier, Effect of nonlinear resistance<br>on added signals, balanced modulator, Suppression of<br>unwanted Sideband, filter system, phase shift method,<br>The "third" method, System evaluation and<br>comparison, Vestigial sideband transmission, AM<br>transmitter and receiver, TRF and super heterodyne<br>receivers, SNR in DSBSC and SSBSC systems.<br>12 Hours |
|                                                 | Unit II                                                                                                                                                                                                                                                                                            | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 | <b>Frequency Modulation:</b> Angle modulation,<br>Frequency modulation, Narrow band FM Wideband<br>FM, Transmission bandwidth, Generation of FM<br>signals, Direct and Indirect methods, FM<br>demodulators, Noise in FM reception, Threshold effect,<br>Pre-emphasis and De-emphasis.<br>12 hours | <b>Frequency Modulation:</b> Theory of Frequency and<br>Phase Modulation, Description of Systems,<br>Mathematical Representation of FM, Frequency<br>Spectrum of FM Wave, Phase Modulation,<br>Intersystem Comparisons, Noise and Frequency<br>Modulation, Effects of Noise on Carrier Noise<br>Triangle, Pre emphasis and De emphasis, Comparison<br>of Wideband and Narrowband FM, Stereophonic FM                                                                                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Multiplex System, Generation of Frequency<br>Modulation, Direct Methods, Stabilized Reactance<br>Modulator AFC, Indirect Method, Basic FM<br>demodulators<br>12 Hours                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analog Pulse Modulation: Sampling theorem for<br>band-pass signals, Pulse Amplitude modulation:<br>generation and demodulation, PAM/TDM system,<br>PPM generation and demodulation, PWM, Spectra of<br>Pulse modulated signals, SNR calculations for pulse<br>modulation systems. Waveform coding: quantization,<br>PCM, DPCM, Delta modulation, Adaptive delta<br>modulation- Design of typical systems and<br>performance analysis.<br>12 Hours                    | Analog Pulse Modulation: Sampling theorem for<br>band pass signals, Pulse Amplitude modulation:<br>generation and demodulation, PAM/TDM system,<br>PPM generation and demodulation, PWM, Spectra of<br>Pulse modulated signals, SNR calculations for pulse<br>modulation systems. Waveform coding: quantization,<br>PCM, DPCM, Delta modulation, Adaptive delta<br>modulation Design of typical systems and<br>performance analysis.<br>12 Hours |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pulse Shaping, Nyquist criterion for zero ISI, Signaling<br>with duobinary pulses, Eye diagram, Equalizer,<br>Scrambling and descrambling. Signal space concepts:<br>geometric structure of the signal space, L2 space,<br>distance, norm and inner product, orthogonality-<br>Base band pulse data transmission: Matched filter<br>receiver, Inter symbol interference, Gram-Schmidt<br>Orthogonalization Procedure.<br>Digital modulation schemes: Coherent Binary | Pulse Shaping, Nyquist criterion for zero ISI,<br>Signaling with duobinary pulses, Eye diagram,<br>Equalizer, Scrambling and descrambling. Signal space<br>concepts: geometric structure of the signal space, L2<br>space, distance, norm and inner product, orthogonality<br>Base band pulse data transmission: Matched filter<br>receiver, Inter symbol interference, Gram Schmidt<br>Orthogonalization Procedure.                             |
| Schemes: ASK, FSK, PSK, MSK. Coherent M-ary<br>Schemes, Calculation of average probability of error<br>for different modulation schemes.                                                                                                                                                                                                                                                                                                                             | Digital modulation schemes: Coherent Binary<br>Schemes: ASK, FSK, PSK, MSK. Coherent M-ary<br>Schemes, Calculation of average probability of error                                                                                                                                                                                                                                                                                               |

|                        | 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for different modulation schemes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | <ol> <li>Electronic communications, 4th edition: Dennis<br/>Roddy and John Coolen, Prentice – Hall of India Pvt.<br/>Ltd. New Delhi (1997)</li> <li>Modern Communication Systems – principles and<br/>applications: Leon W. Couch II, Prentice Hall of India<br/>Pvt. Ltd. New Delhi (1998).</li> <li>Electronic Communication systems – 4th edition:<br/>George Kennedy and Bernard Davis, Tata McGraw –<br/>Hill Publishing Company Ltd., New Delhi (1999).</li> <li>Communication Systems, 3rd ed., Simon Haykin,<br/>John Wiley &amp; Sons.</li> <li>Modern Digital and Analog Communication, 3rd<br/>Ed., B.P. Lathi, Oxford University Press.</li> </ol> | <ol> <li>Electronic communications, 4th edition:<br/>Dennis Roddy and John Coolen, Prentice –<br/>Hall of India Pvt. Ltd. New Delhi (1997)</li> <li>Modern Communication Systems – principles<br/>and applications: Leon W. Couch II, Prentice<br/>Hall of India Pvt. Ltd. New Delhi (1998).</li> <li>Electronic Communication systems – 4th<br/>edition: George Kennedy and Bernard Davis,<br/>Tata McGraw – Hill Publishing Company Ltd.,<br/>New Delhi (1999).</li> <li>Communication Systems, 3rd ed., Simon<br/>Haykin, John Wiley &amp; Sons.</li> <li>Modern Digital and Analog Communication,<br/>3rd Ed., B.P. Lathi, Oxford University Press.</li> </ol> |
|                        | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | <ol> <li>Communication Systems: Simon Haykin, Wiley<br/>Eastern Ltd., New Delhi (1978).</li> <li>Radio Engineering: G. K. Mittal, Khanna Publishers,<br/>Delhi (1998).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>Communication Systems: Simon Haykin,<br/>Wiley Eastern Ltd., New Delhi (1978).</li> <li>Radio Engineering: G. K. Mittal, Khanna<br/>Publishers, Delhi (1998).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PG85T404               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Course PHST           | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4): Condensed        | Sunanandustivity Oscimonas of sumary interity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Supersonductivity Occurrence of superson hereits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matter Physics –<br>IV | <b>Superconductivity:</b> Occurrence of superconductivity, destruction of superconductivity by magnetic field,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Superconductivity:</b> Occurrence of superconductivity, destruction of superconductivity by magnetic field,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IV                     | heat capacity and energy gap, microwave and infrared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | heat capacity and energy gap, microwave and infrared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Teaching hours per     | properties, type I and type II superconductors, high Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | properties, type I and type II superconductors, high Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| week: 4<br>No of Credits: 4 | superconductors (qualitative ideas only).<br>Thermodynamics of superconductivity, London<br>equations, coherence length, flux quantization in<br>superconducting ring, duration of persistent current.<br>12 hours                                                                         | superconductors (qualitative ideas only).<br>Thermodynamics of superconductivity, London<br>equations, coherence length, flux quantization in<br>superconducting ring, duration of persistent current.<br>12 Hours                                                                        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Unit – II                                                                                                                                                                                                                                                                                  | Unit II                                                                                                                                                                                                                                                                                   |
|                             | <b>BCS Theory:</b> Attraction between Cooper – pairs, accomplishments of BCS theory.                                                                                                                                                                                                       | <b>BCS Theory:</b> Attraction between Cooper – pairs, accomplishments of BCS theory.                                                                                                                                                                                                      |
|                             | <b>Tunneling:</b> Basic concepts of tunneling, metal-<br>insulator tunneling, metal-insulator-superconductor<br>tunneling, supercondutror-insulator-superconductor<br>tunneling, Cooper-pair tunneling. A. C. and D. C.<br>Josephson effect, macroscopic quantum interference.<br>12 hours | <b>Tunneling:</b> Basic concepts of tunneling, metal-<br>insulator tunneling, metal insulatorsuperconductor<br>tunneling, supercondutror-insulator-superconductor<br>tunneling, Cooper-pair tunneling, A. C. and D. C.<br>Josephson effect, macroscopic quantum interference.<br>12 Hours |
|                             | Unit – III                                                                                                                                                                                                                                                                                 | Unit III                                                                                                                                                                                                                                                                                  |
|                             | Amorphous Semiconductors: Classification, band<br>structure, electronic conduction, optical absorption,<br>switching.                                                                                                                                                                      | <b>Amorphous Semiconductors:</b> Preparation of amorphous semiconductors, classification, band structure, electronic conduction, optical absorption, electrical switching (Ovonic diode).                                                                                                 |
|                             | <b>Polymers:</b> Basic concepts, classification of polymers, effects of temperature, mechanical properties, electrical properties.                                                                                                                                                         | <b>Polymers:</b> Basic concepts, classification of polymers, effect of temperature, mechanical properties of general polymers. Conducting polymers, classes, synthesis,                                                                                                                   |
|                             | <b>Liquid crystals:</b> Classification, orientational order and inter-molecular forces, magnetic effects, optical properties, applications. 12 hours                                                                                                                                       | charge transport mechanism.<br>Liquid crystals: Classification, orientational order<br>and inter-molecular forces, magnetic effects, optical<br>properties and general applications.                                                                                                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Nanostructured materials:</b> Introduction, electronic<br>and optical properties: quantum confinement effect.<br>Synthesis of nanoparticles: gas phase and colloidal<br>synthesis. Carbon based nanomaterials: qualitative<br>ideas of carbon nanotubes and graphene. Magnetic<br>nanostructures. Applications of nanomaterials.                                                                                                                                                                                | <b>Nanostructured materials:</b> Introduction, electronic<br>and optical properties: quantum confinement effect.<br>Synthesis of nanoparticles: gas phase and colloidal<br>synthesis. Carbon based nanomaterials: qualitative<br>ideas of carbon nanotubes and graphene. Magnetic<br>nanostructures. Applications of nanomaterials.                                                                                                                                                                                        |
| <b>Characterization techniques:</b> Scanning electron and transmission electron microscopies, atomic force microscopy, X-ray diffraction and optical spectroscopy 12 hrs                                                                                                                                                                                                                                                                                                                                           | Characterization techniques: X-ray diffraction,<br>optical spectroscopy,scanning electron and<br>transmission electron microscopies. The basic<br>concepts of scanning tunneling and atomic force<br>microscopies.<br>12 Hours                                                                                                                                                                                                                                                                                             |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Introduction to Solid State Physics: C. Kittel,<br/>Editions: 2,5,6,7, Wiley Eastern Ltd., Bangalore.</li> <li>Elementary Solid State Physics: M.A. Omar<br/>Addison-Wesley Pvt. Ltd., New Delhi, (2000).</li> <li>Amorphous Semiconductors: D. Adler, CRC,<br/>London, (1972).</li> <li>Introduction to Nanotechnolgy: C.P. Poole Jr. and<br/>F.J. Owens, John Wiley and Sons, Singapore (2006).</li> <li>Nano: The Essentials: T. Pradeep, Tata McGraw-Hill<br/>Publishing New Delhi (2007).</li> </ol> | <ol> <li>Introduction to Solid State Physics: C. Kittel,<br/>Editions: 2,5,6,7, Wiley Eastern Ltd.,<br/>Bangalore.</li> <li>Elementary Solid State Physics: M.A. Omar<br/>Addison-Wesley Pvt. Ltd., New Delhi, (2000).</li> <li>Amorphous Semiconductors: D. Adler, CRC,<br/>London, (1972).</li> <li>Introduction to Nanotechnolgy: C.P. Poole Jr.<br/>and F.J. Owens, John Wiley and Sons,<br/>Singapore (2006).</li> <li>Nano: The Essentials: T. Pradeep, Tata<br/>McGraw-Hill Publishing New Delhi (2007).</li> </ol> |

|                                                                                                                                                         | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         | <ol> <li>Solid State Physics : A. J. Dekker, Macmillan India<br/>Ltd., Bangalore (1981)</li> <li>Solid State Physics: F. W. Aschroft and N. D.<br/>Mermin, Saunders College Publishing, New York,<br/>(1976).</li> <li>Electronic processes in Non Crystalline Materials :<br/>N. F. Mott and E. A. Davis, Clarendon press, Oxford,<br/>(1979).</li> <li>Nanoscale Materials – (Ed) L.M. Liz-Marzan and<br/>P.V.Kamat, (Kluwer, 2003)</li> <li>Nanostructured Materials and Nanotechnology, (Ed)<br/>H.S.Nalwa, (Academic,2002)</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi (2009)</li> <li>Solid State Physics, J.D. Patterson and B.C. Bailey,<br/>Springer-Verlag, Berlin (2007)</li> </ol> | <ol> <li>Solid State Physics : A. J. Dekker, Macmillan<br/>India Ltd., Bangalore (1981)</li> <li>Solid State Physics: F. W. Aschroft and N. D.<br/>Mermin, Saunders College Publishing, New<br/>York, (1976).</li> <li>Electronic processes in Non-Crystalline<br/>Materials : N. F. Mott and E. A. Davis,<br/>Clarendon press, Oxford, (1979).</li> <li>Nanoscale Materials – (Ed) L.M. Liz-Marzan<br/>and P.V.Kamat, (Kluwer, 2003)</li> <li>Nanostructured Materials and Nanotechnology,<br/>(Ed) H.S.Nalwa, (Academic,2002)</li> <li>Elements of Solid State Physics (2nd Ed): J.P.<br/>Srivastava, PHI Learning Pvt. Ltd., New Delhi<br/>(2009)</li> <li>Solid State Physics, J.D. Patterson and B.C.<br/>Bailey, Springer Verlag, Berlin (2007)</li> </ol> |
| PG85T404<br>(Course 4.4):<br>Atomic &<br>Molecular<br>Physics -IV<br>(Lasers and Fiber<br>Optics)<br>Teaching Hours<br>per Week: 4<br>No. of Credits: 4 | <ul> <li>Unit I</li> <li>Basic Principles of Lasers: Necessary and sufficient conditions for laser action, threshold requirements for laser action with and without cavity, rate equations for three and four level systems. Spatial and temporal coherence.</li> <li>Resonators: Spherical, Plane parallel, confocal resonator and unstable resonator. Resonance frequencies, stability conditions. Single and multimodes. Techniques for obtaining single line and single</li> </ul>                                                                                                                                                                                                                                                                       | <ul> <li>Unit I</li> <li>Laser Amplifiers: Requirements for population inversions for Two , Three and Four level systems:necessary and sufficient conditions for laser action, threshold requirements for laser action with and without cavity, rate equations. Pumping requirements and techniques.</li> <li>Laser Resonators: Longitudinal and transverse modes: Fabry Perot resonator, its cavity modes. Properties of modes: spatial dependence, frequency</li> </ul>                                                                                                                                                                                                                                                                                        |

| PG85T404 (Course                | 12 hours                                              | parallel, confocal resonator and unstable resonators.  |
|---------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| <mark>4.4): Atomic &amp;</mark> |                                                       | Stability stability criteria, properties of Gaussian   |
| Molecular                       |                                                       | beams. Q switching and mode locking:general            |
| Physics IV                      |                                                       | techniques and examples.                               |
| (Lasers,                        |                                                       | 12 Hours                                               |
| Nonlinear Optical               |                                                       |                                                        |
| Effects and Laser               | Unit II                                               | Unit II                                                |
| <mark>Spectroscopy)</mark>      |                                                       |                                                        |
|                                 | Gas and Solid State Lasers:                           | Lasers with low density gain media: General            |
| Teaching hours per              | Metal vapor lasers: Copper vapor lasers, Helium-      | description, laser structure, excitation mechanism and |
| Week: 4                         | Cadmium ion laser, Argon ion laser. Molecular lasers: | applications of Copper vapor laser, Helium-Cadmium     |
| No. of Credits: 4               | Hydrogen laser, Nitrogen laser, Carbon monoxide       | laser, Argon and Krypton ion lasers. Nitrogen laser,   |
|                                 | laser. Semiconductor lasers: Gallium Arsenide laser.  | Carbon-dioxide laser, Excimer laser, X-ray laser, and  |
|                                 |                                                       | Free Electron laser.                                   |
|                                 | Liquid lasers: Dye laser, Ring dye laser, Tuning      | 12 Hours                                               |
|                                 | techniques, and Mode locking techniques.              |                                                        |
|                                 |                                                       |                                                        |
|                                 | High Power Lasers: Carbon dioxide laser, Carbon       |                                                        |
|                                 | dioxide-Nitrogen laser, Neodymium YAG laser,          |                                                        |
|                                 | Neodymium glass laser.                                |                                                        |
|                                 | 12 hours                                              |                                                        |
|                                 | TI *4 TTT                                             | TT */ TTT                                              |
|                                 | Unit III                                              | Unit III                                               |
|                                 | Non linier Effects & Laser Spectroscopy: Second       | Lasers with high density gain media: General           |
|                                 | harmonic generation, Phase matching, Parametric       | description, laser structure, excitation mechanism and |
|                                 | oscillation, Self focusing light (quantitative)       | applications of Dye lasers, Neodymium YAG and          |
|                                 | (quantitative)                                        | Glass lasers, Alexandrite laser, Titanium sapphire     |
|                                 | High Resolution Spectroscopy: Idea of hole burning,   | laser, Fiber lasers and semiconductor diode            |
|                                 | the Lamb dip, Inverse Lamb dip, stabilization of      | lasers(homo and hetero junction and quantum well       |
|                                 | frequency. Doppler-free and Doppler-limited           | lasers)                                                |
|                                 | Spectroscopy. Two- photon spectroscopy.               | 12 Hours                                               |
|                                 | 1 1,5 - ··· r-·····r,5                                |                                                        |

| LaserRamanSpectroscopy:Resonaspectroscopy,HyperRamanspectroscopyeffStimulated Raman effect,Inverse Raman effect.12 ho                                                                                                                                                                                                  | ect,                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit IV                                                                                                                                                                                                                                                                                                                | Unit IV                                                                                                                                                                                                              |
| <b>Optical Fiber Wave Guides:</b> Electromagnetic m<br>theory for optical propagation, Mode Coupling- S<br>index, and Graded index.                                                                                                                                                                                    |                                                                                                                                                                                                                      |
| Light Sources for Optical Fibers: Transmitt<br>LED&LD, Characteristics, Receiver-PIN<br>Avalanche photodiodes.                                                                                                                                                                                                         | ers- light.<br>and High Resolution Spectroscopy: Idea of hole burning,                                                                                                                                               |
| <b>Transmission characteristics of optical fib</b><br>Transmission losses, attenuation, absorption, scatter<br>bending. Dispersion (intermodal and intramodal).                                                                                                                                                        |                                                                                                                                                                                                                      |
| Fiber Optic Sensors: Intensity and Phase modula<br>sensors (qualitative).<br>12 ho                                                                                                                                                                                                                                     | Raman effect, CARS (Coherent Anti Stokes Raman                                                                                                                                                                       |
| Text Books                                                                                                                                                                                                                                                                                                             | Text Books                                                                                                                                                                                                           |
| <ol> <li>Optical Fiber &amp; Communication Principles<br/>Practice: John M. Senior, Prentice-Hill Intl. I<br/>London (1992)</li> <li>Laser and Non-Linear Optics: B.B.Laud, W<br/>Eastern Ltd., New Delhi(1991)</li> <li>Laser Electronics: Joseph T. Verdeyen, Prentice-I<br/>of India Pvt Ltd. New Delhi.</li> </ol> | <ul> <li>td. Eastern Ltd., New Delhi(1991)</li> <li>2. Laser Electronics: Joseph T. Verdeyen,<br/>Prentice Hall of India Pvt Ltd. New Delhi.</li> <li>3. Introduction to Fiber Optics: A. Ghatak &amp; K.</li> </ul> |

| T<br>5                                                                                                                              | <ul> <li>Introduction to Fiber Optics: A. Ghatak &amp; K. Thagarajan, Cambridge Univ. Press (1999)</li> <li>Lasers: Theory of Applications: A. Ghatak &amp; K. Thagarajan, MacMillan India (1981)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.                                                                     | K. Thagarajan, MacMillan India (1981)<br>Modern Spectroscopy (4th ed), J.Michael<br>Hollas, John Wiley, 2004.<br>Optical Fiber & Communication Principles &<br>Practice: John M. Senior, Prentice Hill Intl.<br>Ltd. London (1992)<br>Laser Fundamentals: W. Silfvast, Cambridge<br>Univ. Press.                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R                                                                                                                                   | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer                                                                  | ence Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N<br>2<br>M<br>3<br>P<br>4<br>S<br>5<br>B<br>6<br>H<br>7<br>A<br>8<br>6<br>H<br>7<br>A<br>8<br>8<br>R<br>9<br>9<br>B<br>1<br>1<br>V | <ul> <li>Principles of Lasers: O. Svelto, Plenum Press, N.Y(1982)</li> <li>Introduction to Gas Lasers- Population Inversion Mechanisms: C.S. Willet, Permon Press, Oxford (1974)</li> <li>Laser Fundamentals: W. Silfvast, Cambridge Univ. Press</li> <li>High Resolution Spectroscopy: K. Shimoda, Springer Verlag, Berlin (1976)</li> <li>Raman Spectroscopy: D.A. Long, McGraw-Hill Intl. Book Co (1977)</li> <li>Laser Principles &amp; Applications: J. Wilson &amp; J.F.B. Hawkes, Prentice-Hall Intl. Inc.(1983)</li> <li>Fiber Optics Sensors: D.A. Khron, Instrument Soc. Am (1988)</li> <li>Encyclopedia of Lasers &amp; Optical Techology: Robert A. Meyers, Academic Press, Cal.(1991)</li> <li>Laser Spectroscopy: H. Walther, Springer Verlag, Berlin (1976)</li> <li>Fiber Optic Communication: D. C. Agrawal, Wheeler Publication (1993)</li> <li>Optoelectronics- An Introduction: J. Wilson &amp; J. F.</li> </ul> | <ol> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> </ol> | Principles of Lasers: O. Svelto, Plenum Press,<br>N.Y(1982)<br>Introduction to Gas Lasers Population<br>Inversion Mechanisms: C.S.Willet, Permon<br>Press, Oxford (1974)<br>High Resolution Spectroscopy: K. Shimoda,<br>Springer Verlag, Berlin (1976)<br>Raman Spectroscopy: D.A. Long, McGraw<br>Hill Intl. Book Co (1977)<br>Laser Principles & Applications: J. Wilson &<br>J.F.B. Hawkes, Prentice Hall Intl. Inc.(1983)<br>Encyclopedia of Lasers & Optical Technology:<br>Robert A. Meyers, Academic Press, Cal.(1991)<br>Laser Spectroscopy: H. Walther, Springer<br>Verlag, Berlin (1976) |

| PG85T404           |                                                                                                               |                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (Course PHST       | Unit – I                                                                                                      | Unit I                                                                    |
| 4.4): Nuclear &    |                                                                                                               |                                                                           |
| Particle Physics – | Nuclear Fission: Bohr-Wheeler theory of nuclear                                                               | Nuclear Fission: Bohr-Wheeler theory of nuclear                           |
| IV                 | fission, saddle point, scission point, barrier penetration,                                                   | fission, saddle point, scission point, barrier                            |
| (Nuclear Energy    | shell correction to the liquid drop model, Strutinsky's                                                       | penetration, shell correction to the liquid drop model,                   |
| and Nuclear        | smoothing procedure, evidence for the existence of                                                            | Strutinsky's smoothing procedure, evidence for the                        |
| Decay)             | second well in fission isomers. Nuclear fission with                                                          | existence of second well in fission isomers. Nuclear                      |
|                    | heavy ions. Nuclear fission-fission time scale.                                                               | fission with heavy ions. Nuclear fission-fission time                     |
| Teaching hours per |                                                                                                               | scale.                                                                    |
| week:4             | Nuclear Fusion : Qualitative discussions on fusion                                                            |                                                                           |
| No of Credits: 4   | reactions.                                                                                                    | Nuclear Fusion: Basic fusion processes,                                   |
|                    |                                                                                                               | characteristics of fusion, fusion in stars. Controlled                    |
|                    | Slowing down of Neutrons : Slowing down of                                                                    | thermonuclear reactions. magnetic pressure, pinch                         |
|                    | neutrons by elastic collisions – logarithmic decrement<br>in energy, number of collisions for thermalization, | effect, magnetic confinement systems for controlled thermonuclear fusion. |
|                    | slowing down power, moderating ratio.                                                                         | 12 Hours                                                                  |
|                    | 12 hours                                                                                                      | 12 110013                                                                 |
|                    | Unit – II                                                                                                     | Unit II                                                                   |
|                    |                                                                                                               |                                                                           |
|                    | Neutron diffusion : Elementary theory of diffusion of                                                         | Slowing down of Neutrons: Slowing down of                                 |
|                    | neutrons- spatial distributions of neutron flux (I) in an                                                     | neutrons by elastic collisions, – logarithmic decrement                   |
|                    | infinite slab with a plane source at one end (II) in an                                                       | in energy, number of collisions for thermalization,                       |
|                    | infinite medium with point source at the center -                                                             | slowing down power, moderating ratio.                                     |
|                    | reflections of neutrons – albedo.                                                                             |                                                                           |
|                    |                                                                                                               | Neutron diffusion: Elementary theory of diffusion of                      |
|                    | Reactor Theory : Slowing down density – Fermi age                                                             | neutrons, spatial distributions of neutron flux (I) in an                 |
|                    | equation correction for absorption – resonance escape                                                         | infinite slab with a plane source at one end (II) in an                   |
|                    | probability – the pile equations – buckling-critical size                                                     | infinite medium with point source at the center -                         |
|                    | for spherical and rectangular piles – condition for chain                                                     | reflections of neutrons – albedo.                                         |
|                    | reaction - the four factor formula - Classification of                                                        |                                                                           |
|                    | reactors – thermal neutron and fast breeder reactors.                                                         | Reactor Theory: Slowing down density – Fermi age                          |
|                    | 12 hours                                                                                                      | equation correction for absorption – resonance escape                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | probability – the pile equations – buckling-critical size<br>for spherical and rectangular piles – condition for<br>chain reaction – the four factor formula –<br>Classification of reactors – thermal neutron and fast<br>breeder reactors.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Beta decay:</b> Review of Fermi's theory of beta decay.<br>Effect of finite mass of neutrino on shape of the beta<br>spectrum. Classification of beta transition on the basis<br>of ft values, selection rules and shapes of beta spectra.<br>Universal fermi interaction. Parity non – conservation<br>in weak interaction – experimental verification (C.S.<br>Wu experiment). Double beta decay, beta delayed<br>nucleon emission. Elementary theory of K-electron<br>capture.<br>12 hours | <b>Beta decay:</b> Classification of beta transition on the basis of ft values, selection rules and shapes of beta spectra. Universal fermi interaction The neutrino in beta decay-inverse beta decay processes- detection of neutrino; Cowan and Reins experiment, determination of neutrino mass, different types of neutrinos, Symmetry breaking in beta decay- parity operation: relevance of psedoscalar quantities. The Wu-Ambler experiment and fall of parity conservation. Discovery of W and Z bosons. Double beta decay, beta delayed nucleon emission .Elementary theory of K-electron capture. |
| Unit –IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Gamma decay:</b> Qualitative discussion of multiple radiation, selection rules, determination of gamma decay transition probability for single particle transition in nuclei- Weisskopf's estimates – comparison with experimental values. Elementary theory of internal conversion and discussion of experimental results. Lifetime measurements, the angular correlation for dipole – dipole transitions, gamma – gamma                                                                     | <b>Gamma decay:</b> Qualitative discussion of multiple<br>radiation, selection rules, determination of gamma<br>decay transition probability for single particle<br>transition in nuclei-Weisskopf's estimates, comparison<br>with experimental values. Elementary theory of<br>internal conversion and discussion of experimental<br>results. Lifetime measurements, the angular<br>correlation for dipole-dipole transitions, gamma-                                                                                                                                                                      |

| correlation studies. Polarization of gamma radiation.<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                                               | gamma correlation studies. Polarization of gamma radiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Structure of the Nucleus: M. A. Preston and R.K.<br/>Bhaduri Addision – Wesley (1975).</li> <li>Atomic and Nuclear Physics Vol. II : S. N. Goshal.</li> <li>Chand and Company (1998).</li> <li>Introductory Nuclear Physics : Kenneth S. Krane,<br/>John Wiley and sons (1998)</li> <li>Subatomic Physics: Nuclei and Particles (Volume –<br/>II) : Luc Valentin North Holland (1981).</li> <li>Introduction to Neutron physics : L. F. Curtis, East<br/>west press (1958).</li> </ol> | <ol> <li>Structure of the Nucleus: M. A. Preston and<br/>R.K. BhaduriAddision – Wesley (1975).</li> <li>Nuclear Physics Vol. II: S. N. Goshal. S.<br/>Chand and Company (2013).</li> <li>Introductory Nuclear Physics : Kenneth S.<br/>Krane, John Wiley and sons (1998)</li> <li>SubatomicPhysics: Nuclei and Particles<br/>(Volume – II): Luc Valentin North Holland<br/>(1981).</li> <li>Introduction to Neutron Physics: L. F. Curtis,<br/>East west press (1958).</li> <li>Nuclear Reactor Engineering: Glasstone S and<br/>Sesonske A, CBS, Delhi, (1994)</li> </ol> |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>Theoretical Nuclear Physics: J. M. Blatt and V. F.<br/>Weisskoff, Wiley (1992).</li> <li>Subatomic Physics (Second Edition) : Hans<br/>Frauenfelder and E.M. Henley, Prentice Hall (1991)</li> <li>Introduction to Nuclear Physics: Herald. A. Enge,<br/>Addison-Wesley (1983).</li> <li>Introductory Nuclear Physics: Samuel S. M. Wong,<br/>Prentice – Hall (1996).</li> </ol>                                                                                                       | <ol> <li>Theoretical Nuclear Physics: J. M. Blatt and V.<br/>F. Weisskoff, Wiley (1992).</li> <li>Subatomic Physics (Second Edition) : Hans<br/>Frauenfelder and E.M.Henley, Prentice Hall<br/>(1991)</li> <li>Introduction to Nuclear Physics: Herald. A.<br/>Enge, Addison-Wesley (1983).</li> <li>Introductory Nuclear Physics: Samuel S. M.<br/>Wong, Prentice – Hall (1996).</li> <li>Reactor Physics: Zweifel P F, International<br/>student Edn. (McGraw Hill, 1973)</li> </ol>                                                                                     |

| PG85P405<br>(Course PHSP –<br>4.5): Electronics | (8085 Interfacing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (8085 Interfacing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical – III                                 | 1. Stepper motor interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Stepper motor interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Contact hours per                               | 2. ADC and DAC circuit interfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. ADC and DAC circuit interfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| week: 4                                         | (8085 programming)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (8085 programming)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No of Credits : 4                               | <ol> <li>Mathematical operations, block transfer and sorting<br/>of 8-bit data</li> <li>Mathematical operations with 16-bit data</li> <li>Code conversion methods</li> <li>8085 Interrupts and subroutines</li> </ol>                                                                                                                                                                                                                                                                                                                      | <ol> <li>Mathematical operations, block transfer and<br/>sorting of 8-bit data</li> <li>Mathematical operations with 16-bit data</li> <li>Code conversion methods</li> <li>8085 Interrupts and subroutines</li> </ol>                                                                                                                                                                                                                                                                                                                          |
|                                                 | (New experiments /Assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (New experiments /Assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 | References books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | <ol> <li>Microprocessor Architecture, Programming, and<br/>Applications with 8085/8080 A: Ramesh S. Gaonkar,<br/>New Age International Publishers Ltd.</li> <li>Microcomputer theory and Applications:<br/>Rafiquzzaman Mohamed, John Wiley and Sons, New<br/>York (1987)</li> <li>Introduction to Microprocessors (3rd Edition):<br/>Aditya P. Mathur, Tata – Mc Graw – Hall Publishing<br/>Company Ltd., New Delhi (1989)</li> <li>Modern Digital and Analog Communication, 3rd<br/>Ed., B.P. Lathi, Oxford University Press.</li> </ol> | <ol> <li>Microprocessor Architecture, Programming,<br/>and Applications with 8085/8080 A: Ramesh<br/>S. Gaonkar, New Age International Publishers<br/>Ltd.</li> <li>Microcomputer theory and Applications:<br/>Rafiquzzaman Mohamed, John Wiley and<br/>Sons, New York (1987)</li> <li>Introduction to Microprocessors (3rd Edition):<br/>Aditya P. Mathur, Tata – Mc Graw – Hall<br/>Publishing Company Ltd., New Delhi (1989)</li> <li>Modern Digital and Analog Communication,<br/>3rd Ed., B.P. Lathi, Oxford University Press.</li> </ol> |
| PG85P405<br>(Course PHSP<br>4.5): Condensed     | <ol> <li>Indexing of hexagonal systems.</li> <li>Precise parameter determination:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Indexing of hexagonal systems.</li> <li>Precise parameter determination:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Matter Physics    | a. Extrapolation method.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a. Extrapolation method.                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical – III   | b. Cohen's method                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. Cohen's method                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 3. Structure determination of CdTe.                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. Structure determination of CdTe.                                                                                                                                                                                                                                                                                                                                                                         |
| Contact hours per | 4. Universal curves for ferromagnets                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. Universal curves for ferromagnets                                                                                                                                                                                                                                                                                                                                                                        |
| week: 4           | 5. Determination of skin depth                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. Determination of skin depth                                                                                                                                                                                                                                                                                                                                                                              |
| No of Credits : 4 | 6. Phase transition in ferroelectric crystals                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Phase transition in ferroelectric crystals                                                                                                                                                                                                                                                                                                                                                               |
|                   | 7. Temperature dependence of susceptibity of a                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. Temperature dependence of susceptibity of a                                                                                                                                                                                                                                                                                                                                                              |
|                   | paramagnetic substance                                                                                                                                                                                                                                                                                                                                                                                                                                                       | paramagnetic substance                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 8. Characteristics of a solar cell                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8. Characteristics of a solar cell                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 9. Defect formation energy in metals                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9. Defect formation energy in metals                                                                                                                                                                                                                                                                                                                                                                        |
|                   | 10. Diamagnetic susceptibility of water molecule.                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. Diamagnetic susceptibility of water molecule.                                                                                                                                                                                                                                                                                                                                                           |
|                   | 11. Fermi energy of copper                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11. Fermi energy of copper                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 12. Dielectric constant of non-polar liquids (benzene)                                                                                                                                                                                                                                                                                                                                                                                                                       | 12. Dielectric constant of non polar liquids                                                                                                                                                                                                                                                                                                                                                                |
|                   | 13. Dipole moment of organic molecule (acetone)                                                                                                                                                                                                                                                                                                                                                                                                                              | (benzene)                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 14. BH curve using integrator                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. Dipole moment of organic molecule (acetone)                                                                                                                                                                                                                                                                                                                                                             |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. BH curve using integrator                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | (New experiments/assignments may be added)                                                                                                                                                                                                                                                                                                                                                                                                                                   | (New experiments/assignments may be added)                                                                                                                                                                                                                                                                                                                                                                  |
|                   | (New experiments/assignments may be added)<br>Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                | (New experiments/assignments may be added)<br>Reference Books                                                                                                                                                                                                                                                                                                                                               |
|                   | Reference Books 1. X-ray diffraction: B.D. Cullity, Addison-Wesley,                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Reference Books</b><br>1. X ray diffraction: B.D. Cullity, Addison                                                                                                                                                                                                                                                                                                                                       |
|                   | Reference Books 1. X-ray diffraction: B.D. Cullity, Addison-Wesley, New York (1972).                                                                                                                                                                                                                                                                                                                                                                                         | Reference Books 1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).                                                                                                                                                                                                                                                                                                                        |
|                   | Reference Books <ol> <li>X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>X-ray diffraction procedures: H.P. Klug and L.E.</li> </ol>                                                                                                                                                                                                                                                                                                          | <ul> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and</li> </ul>                                                                                                                                                                                                                                   |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> </ul>                                                                                                                                                                                                                                             | Reference Books 1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).                                                                                                                                                                                                                                                                                                                        |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:</li> </ul>                                                                                                                                                                             | <ul> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and L.E. Alexander, John Wiley and sons, New York.</li> </ul>                                                                                                                                                                                    |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> </ul>                                                                                                                                                                                                                                             | <ul> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and L.E. Alexander, John Wiley and sons, New York.</li> <li>3. Interpretation of X ray powder diffraction</li> </ul>                                                                                                                             |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London</li> </ul>                                                                                                                           | <ul> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and L.E. Alexander, John Wiley and sons, New York.</li> <li>3. Interpretation of X ray powder diffraction</li> </ul>                                                                                                                             |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London<br/>(1968).</li> </ul>                                                                                                               | <ol> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison<br/>Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and<br/>L.E. Alexander, John Wiley and sons, New<br/>York.</li> <li>3. Interpretation of X ray powder diffraction<br/>pattern: H.P. Lipson and H. Steeple,</li> </ol>                                                                        |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London<br/>(1968).</li> <li>4. Introduction to Solid State Physics : 5th Edn C.</li> </ul>                                                  | <ol> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison<br/>Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and<br/>L.E. Alexander, John Wiley and sons, New<br/>York.</li> <li>3. Interpretation of X ray powder diffraction<br/>pattern: H.P. Lipson and H. Steeple,<br/>Macmillan, London (1968).</li> </ol>                                          |
|                   | <ul> <li>Reference Books</li> <li>1. X-ray diffraction: B.D. Cullity, Addison-Wesley,<br/>New York (1972).</li> <li>2. X-ray diffraction procedures: H.P. Klug and L.E.<br/>Alexander, John-Wiley and sons, New York.</li> <li>3. Interpretation of X-ray powder diffraction pattern:<br/>H.P. Lipson and H. Steeple, Macmillan, London<br/>(1968).</li> <li>4. Introduction to Solid State Physics : 5th Edn C.<br/>Kittel, Wiley Eastern Ltd., Bangalore (1976)</li> </ul> | <ol> <li>Reference Books</li> <li>1. X ray diffraction: B.D. Cullity, Addison Wesley, New York (1972).</li> <li>2. X ray diffraction procedures: H.P. Klug and L.E. Alexander, John Wiley and sons, New York.</li> <li>3. Interpretation of X ray powder diffraction pattern: H.P. Lipson and H. Steeple, Macmillan, London (1968).</li> <li>4. Introduction to Solid State Physics : 5th Edn C.</li> </ol> |

|                                                                                                                                              | <ul> <li>Academic press, London (1968).</li> <li>7. Solid State Physics : A. J. Dekker, Macmillan India<br/>Ltd., Bangalore (1981)</li> <li>8. Solid State Physics : N. W. Aschroft and A. D.<br/>Mermin, Saunders College Publishing New York<br/>(1976)</li> </ul>                                                                                                                                                                                                                                                                             | <ol> <li>Introduction to magnetochemistry: A.<br/>Earnshaw, Academic press, London (1968).</li> <li>Solid State Physics : A. J. Dekker, Macmillan<br/>India Ltd., Bangalore (1981)</li> <li>Solid State Physics : N. W. Aschroft and A. D.<br/>Mermin, Saunders College Publishing New<br/>York (1976)</li> </ol>                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PG85P405<br>(Course -PHSP<br>4.5): Atomic &<br>Molecular<br>Physics Practical<br>– III<br>Contact hours per<br>week : 4<br>No of Credits : 4 | <ol> <li>Rotational analysis of (0, 0) band of BeO:</li> <li>Study of Spatial and Temporal Coherence of He-Ne Laser:</li> <li>Determination of refractive index of the material using He-Ne Laser</li> <li>Study of Absorption spectra on a Single Beam Spectrophotometer</li> <li>Fiber Optic Sensors</li> <li>Vibrational analysis of emission bands of N2.</li> <li>Rotational spectral analysis of N2</li> <li>Measurements of Emission spectra on USB Spectrometer</li> <li>Vibrational Analysis of Emission band spectrum of C2</li> </ol> | <ol> <li>Rotational analysis of (0, 0) band of BeO:</li> <li>Study of Spatial and Temporal Coherence of<br/>He-Ne Laser:</li> <li>Determination of refractive index of the<br/>material using He-Ne Laser</li> <li>Study of Absorption spectra on a Single Beam<br/>Spectrophotometer</li> <li>Fiber Optic Sensors</li> <li>Vibrational analysis of emission bands of N2.</li> <li>Rotational spectral analysis of N2</li> <li>Measurements of Emission spectra on USB<br/>Spectrometer</li> <li>Vibrational Analysis of Emission band<br/>spectrum of C2</li> </ol> |
|                                                                                                                                              | (New Experiments / Assignments may be added)<br>Reference Books<br>1. Experimental Spectroscopy (3rd Edition) : R. A.                                                                                                                                                                                                                                                                                                                                                                                                                            | (New Experiments / Assignments may be added)<br>Reference Books<br>1. Experimental Spectroscopy (3rd Edition) : R.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                              | <ul> <li>Sawyer. Dover Publication, Inc, New York (1963).</li> <li>Atomic Spectra and Atomic Structure (2nd Edition)</li> <li>G. Herzberg. Dover Publication New York (1944)</li> <li>Atomic Spectra – H.E. White, Mc Graw –Hill, New York (1934).</li> </ul>                                                                                                                                                                                                                                                                                    | <ul> <li>A. Sawyer. Dover Publication, Inc, New York (1963).</li> <li>2. Atomic Spectra and Atomic Structure (2nd Edition) – G. Herzberg. Dover Publication New York (1944)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |

|                         | 4. A Course of Experiments with He-Ne Lasers (2nd        | 3. Atomic Spectra – H.E. White, Mc Graw –Hill,       |
|-------------------------|----------------------------------------------------------|------------------------------------------------------|
|                         | Edition): R. S. Sirohi. Wiley Eastern, New Delhi         | New York (1934).                                     |
|                         | (1991).                                                  | 4. A Course of Experiments with He-Ne Lasers         |
|                         | 5. Principles of Lasers: Svelto. O, Plenum Press New     | (2nd Edition): R. S. Sirohi. Wiley Eastern,          |
|                         | York (1982).                                             | New Delhi (1991).                                    |
|                         | 6. Lab. Manuals.                                         | 5. Principles of Lasers: Svelto. O, Plenum Press     |
|                         | 7. Molecular Spectra & Molecular Structure Vol. I : G.   | New York (1982).                                     |
|                         | Herzberg, D. Van Nostrand Co, New York (1950)            | 6. Lab. Manuals.                                     |
|                         | 8. Instrumental Methods of Analysis : H. H. Willard, L.  | 7. Molecular Spectra & Molecular Structure Vol.      |
|                         | L. Merrit, J. A. Dean and F. A. Settle, J. K. Jain for   | I : G. Herzberg, D. Van Nostrand Co, New             |
|                         | CBS Publishers (1986)                                    | York (1950)                                          |
|                         | 9. The Identification of Molecular Spectra: R.W. B.      | 8. Instrumental Methods of Analysis : H. H.          |
|                         | Pears & A. G. Gaydon, Wiley, New York (1961).            | Willard, L. L. Merrit, J. A. Dean and F. A.          |
|                         | 10. Fiber Optic Laboratory Experiments : Joel N.G        | Settle, J. K. Jain for CBS Publishers (1986)         |
|                         | 1 5 1                                                    | 9. The Identification of Molecular Spectra: R.W.     |
|                         |                                                          | B. Pears & A. G. Gaydon, Wiley, New York             |
|                         |                                                          | (1961).                                              |
|                         |                                                          | 10. Fiber Optic Laboratory Experiments : Joel N.G    |
| PG85P405                |                                                          | â î â                                                |
| (Course PHSP            | 1. Z dependence of external bremsstrahlung               | 1. Z dependence of external bremsstrahlung           |
| 4.5): Nuclear &         | 2. Anthracene crystal beta ray spectrometer              | 2. Anthracene crystal beta ray spectrometer          |
| <b>Particle Physics</b> | 3. Electron capture transition energy using internal     | 3. Electron capture transition energy using          |
| Practical –III          | bremsstrahlung                                           | internal bremsstrahlung                              |
|                         | 4. Coincidence circuit                                   | 4. Coincidence circuit                               |
| Contact hours per       | 5. Si(Li) beta ray spectrometer                          | 5. Si(Li) beta ray spectrometer                      |
| week : 4                | 6. Digital to analog converter circuits                  | 6. Digital to analog converter circuits              |
| No of Credits : 4       | 7. Half life of 40K                                      | 7. Half life of 40K                                  |
|                         | 8. Gamma gamma angular correlation                       | 8. Gamma gamma angular correlation                   |
|                         | 9. Nuclear reaction analysis                             | 9. Nuclear reaction analysis                         |
|                         | 10. Schmidt trigger circuit using transistors and IC 555 | 10. Schmidt trigger circuit using transistors and IC |
|                         | 11. Charge sensitive pre-amplifier using LF 357          | 555                                                  |
|                         | 12. Function generator using IC 741                      | 11. Charge sensitive pre amplifier using LF 357      |
|                         | 12. I whether generation abing ite , in                  | 12. Function generator using IC 741                  |
|                         |                                                          | 12. I unedon generator using 10 / +1                 |

| (New experiments/assignments may be added)<br>References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (New experiments/assignments may be added)<br>References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Experiments in Modern Physics: A.C. Melissions,<br/>Academic Press (NY) (1966).</li> <li>Experiments in Nuclear Science, ORTEC<br/>Application Note. ORTEC, (1971)</li> <li>(Available in Nuclear Physics Laboratory).</li> <li>Practical Nucleonics: F. J. Pearson., and R. R.<br/>Osborne, E &amp; F. N. Spon Ltd., London (1960).</li> <li>The Atomic Nucleus: R. D. Evans, tata Mc Graw<br/>Hill Pub. Comp. Ltd. (1960).</li> <li>Nuclear Radiation Detectors: R. D. Kapoor and V. S.<br/>Ramamurthy, Wiely Eastern Limited (1986).</li> <li>Experimental Nucleonics : E. Bleuler and G. J.<br/>Goldsmith, Rinehart &amp; Co. Inc. (NY) (1958)</li> <li>A manual of experiments in reactor physics: Frank<br/>A. Valente the Macmillan company (1963).</li> <li>A practical introduction to electronic circuits: Martin<br/>Harthley Jones Cambridge University Press (1977).</li> <li>Integrated Circuit Projects: R. M. Marston Newnes<br/>Technical Books (1978).</li> <li>Semiconductor Projects: R. M. Marston A Newnes<br/>Technical Books (1978).</li> <li>Linear Integrated Circuits: D. Roy Choudhary and<br/>Shail Jain, New Age International (1995).</li> <li>Op-Amps and Linear Integrated Circuits:<br/>Ramakanth A Gayakawad, Prentice-Hall of India<br/>(1995).</li> <li>Op-Amps and Linear Integrated Circuits:</li> </ol> | <ol> <li>Experiments in Modern Physics: A.C.<br/>Melissions, Academic Press (NY) (1966).</li> <li>Experiments in Nuclear Science, ORTEC<br/>Application Note. ORTEC, (1971)</li> <li>(Available in Nuclear Physics Laboratory).</li> <li>Practical Nucleonics: F. J. Pearson., and R. R.<br/>Osborne, E &amp; F. N. Spon Ltd., London (1960).</li> <li>The Atomic Nucleus: R. D. Evans, tata Mc<br/>Graw Hill Pub. Comp. Ltd. (1960).</li> <li>Nuclear Radiation Detectors: R. D. Kapoor and<br/>V. S. Ramamurthy, Wiely Eastern Limited<br/>(1986).</li> <li>Experimental Nucleonics : E. Bleuler and G. J.<br/>Goldsmith, Rinehart &amp; Co. Inc. (NY)</li> <li>(1958)</li> <li>A manual of experiments in reactor physics:<br/>Frank A. Valente the Macmillan company</li> <li>(1963).</li> <li>A practical introduction to electronic circuits:<br/>Martin Harthley Jones Cambridge University<br/>Press (1977).</li> <li>Integrated Circuit Projects: R. M. Marston<br/>Newnes Technical Books (1978).</li> <li>Semiconductor Projects: R. M. Marston A<br/>Newnes Technical Books (1978).</li> <li>Linear Integrated Circuits: D. Roy Choudhary<br/>and Shail Jain, New Age International (1995).</li> <li>Op-Amps and Linear Integrated Circuits:</li> </ol> |

|                   | Ramakanth A Gayakawad, Prentice Hall of India                                                     | Ramakanth A Gayakawad, Prentice-Hall of                                               |
|-------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                   | (1995).                                                                                           | India (1995).                                                                         |
|                   | (1995).                                                                                           | 16. Op-Amps and Linear Integrated Circuits:                                           |
|                   |                                                                                                   | Ramakanth A Gayakawad, Prentice Hall of                                               |
|                   |                                                                                                   | India (1995).                                                                         |
| PG85PJ406         |                                                                                                   | India (1995).                                                                         |
| (Course SPJ4.6):  | Course SDIA ( Droject in Flectronics                                                              | Course SD146 Devices in Floatnanias                                                   |
|                   | Course SPJ4.6 – Project in Electronics                                                            | Course SPJ4.6 – Project in Electronics                                                |
| Project           | Topic(s) for the project may be selected in                                                       | Taria(a) for the revient may be calented in                                           |
|                   | consultation with the project supervisor.                                                         | Topic(s) for the project may be selected in                                           |
| Contact hours per | Reference/Text books to be recommended by the Course Teacher                                      | consultation with the project supervisor.                                             |
| week: 4           |                                                                                                   | Defense /Test hashes to be seen used at her the                                       |
| No of Credits: 4  | Course PH SPJ 4.6: Project in Solid State Physics                                                 | Reference/Text books to be recommended by the                                         |
|                   | Topic(s) for the project may be selected in                                                       | Course Teacher                                                                        |
| PG85PJ406         | consultation with the project supervisor.                                                         | Commendation Difference of the Colling States Disputer                                |
| (Course SPJ4.6):  | Reference/Text books to be recommended by the Course Teacher                                      | Course PH SPJ 4.6: Project in Solid State Physics                                     |
|                   |                                                                                                   | Tenie(-) for the united many he called a in                                           |
| <b>Project</b>    | Course -PHSPJ 4.6 – Project in Spectroscopy                                                       | Topic(s) for the project may be selected in                                           |
| Contact hours per | Topic(s) for the project may be selected in                                                       | consultation with the project supervisor.                                             |
| week: 6           | consultation with the project supervisor.                                                         | Defense /Test hashes to be measured at her the                                        |
| No of Credits: 6  | Reference/Text books to be recommended by the Course Teacher                                      | Reference/Text books to be recommended by the Course Teacher                          |
| ino of creatis. o |                                                                                                   | Course Teacher                                                                        |
|                   | Course PHSPJ 4.6 Project in Nuclear and Particle                                                  | Course DIICDI 4.C. Dusiest in Atomic 8                                                |
|                   | Physics<br>Tonic() for the project many he celected in                                            | Course PHSPJ 4.6 – Project in Atomic &                                                |
|                   | Topic(s) for the project may be selected in                                                       | Molecular Physics                                                                     |
|                   | <b>consultation with the project supervisor.</b><br>Reference/Text books to be recommended by the | Tonia(a) for the project may be calculated in                                         |
|                   | Course Teacher                                                                                    | Topic(s) for the project may be selected in consultation with the project supervisor. |
|                   |                                                                                                   | consultation with the project supervisor.                                             |
|                   |                                                                                                   | Reference/Text books to be recommended by the                                         |
|                   |                                                                                                   | Course Teacher                                                                        |
|                   |                                                                                                   |                                                                                       |
|                   |                                                                                                   | Course PHSPJ 4.6Project in Nuclear and Particle                                       |
|                   |                                                                                                   | Physics                                                                               |
|                   |                                                                                                   | 1 1139169                                                                             |

|                    |                                                                                                                                       | Topic(s) for the project may be selected in consultation with the project supervisor.<br>Reference/Text books to be recommended by the |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                       | Course Teacher                                                                                                                         |
| OPEN               |                                                                                                                                       | Unit I                                                                                                                                 |
| ELECTIVE           | Unit I                                                                                                                                |                                                                                                                                        |
| COURSES IN         |                                                                                                                                       | Blackbody Radiation: Nature of Blackbody                                                                                               |
| PHYSICS            | <b>Blackbody Radiation:</b> Nature of Blackbody spectrum;                                                                             | spectrum; classical radiation laws and their limitations;                                                                              |
|                    | classical radiation laws and their limitations; Planck's                                                                              | Planck's radiation law and quantum hypothesis.                                                                                         |
| PG85T204           | radiation law and quantum hypothesis. Simple                                                                                          | Simple examples/problems.                                                                                                              |
| (Course PHET       | examples/problems.                                                                                                                    |                                                                                                                                        |
| 2.4): Elective I – |                                                                                                                                       | The Photoelectric Effect: Apparatus used to study the                                                                                  |
| Modern Physics     | The Photoelectric Effect: Apparatus used to study the                                                                                 | Photoelectric Effect; laws of Photoelectric Effect;                                                                                    |
|                    | Photoelectric Effect; laws of Photoelectric Effect;                                                                                   | Einstein Photoelectric Equation. Simple examples.                                                                                      |
| Teaching hours per | Einstein Photoelectric Equation. Simple examples.                                                                                     | TTT                                                                                                                                    |
| week: 04           | Enisteni i neteene Equation simple enamples                                                                                           | <b>X-Rays:</b> Nature and production of X rays; the Bragg                                                                              |
| No. of Credits per | <b>X-Rays:</b> Nature and production of X-rays; the Bragg                                                                             | law; Bragg X ray crystal spectrometer.                                                                                                 |
| week: 04           | law; Bragg X-ray crystal spectrometer.                                                                                                | inn, Drugg ir ing organi speenemeteri                                                                                                  |
| Week. 01           | ian, Bragg it ray orystal speed onleter.                                                                                              | The Compton Effect: X ray Compton scattering from                                                                                      |
|                    | The Compton Effect: X-ray Compton scattering from                                                                                     | an electron; experimental set up for Compton                                                                                           |
|                    | an electron; experimental set-up for Compton                                                                                          | scattering. Simple problems.                                                                                                           |
|                    | scattering. Simple problems.                                                                                                          | 12 Hours                                                                                                                               |
|                    | 12 Hours                                                                                                                              | 12 110415                                                                                                                              |
|                    | 12 110415                                                                                                                             | Unit II                                                                                                                                |
|                    | Unit II                                                                                                                               |                                                                                                                                        |
|                    |                                                                                                                                       | Atomic Structure: Hydrogen spectrum; the Bohr                                                                                          |
|                    | Atomic Structure: Hydrogen spectrum; the Bohr<br>model; experimental measurement of the Rydberg<br>constant; Franck-Hertz experiment. | model; experimental measurement of the Rydberg constant; Franck Hertz experiment.                                                      |
|                    |                                                                                                                                       | Matter Waves: The de Broglie wavelength and its                                                                                        |
|                    | Matter Waves: The de Broglie wavelength and its                                                                                       | e e                                                                                                                                    |

| relation with the Bohr model; Davisson-<br>experiment. Heisenberg Uncertainty pr<br>Momentum-position and Energy-time relations.<br>examples.                                                                                                                                   | inciple: Momentum position and Energy time relations. Simple                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Quantum Physics:</b> Idea of wave function<br>probability. One-dimensional Schrödinger<br>equation: Its application to the particle in a b<br>Hydrogen atom; energies and wave functions.                                                                                    | wave equation: Its application to the particle in a box and                                                                                                                          |
| Vector Model: Space quantization: Orbital<br>moment and magnetic moment; Spin angular r<br>and magnetic moment; Stern-Gerlach expe<br>States of Hydrogen in terms of <b>n</b> , <b>l</b> , <b>ml</b> . The<br>Zeeman Effect; experimental set-up for Zeeman<br>Simple problems. | noment and magnetic moment; Stern Gerlach experiment.<br>riment. States of Hydrogen in terms of n, l, ml. The normal<br>normal Zeeman Effect; experimental set up for Zeeman effect. |
| Unit III                                                                                                                                                                                                                                                                        | Unit III                                                                                                                                                                             |
| <b>Statistical Physics:</b> Distinguishability<br>Indistinguishability; Maxwell-Boltzmann distr<br>for gas molecules; vrms; Equipartition th<br>Quantum statistics: F-D and B-E distributions.                                                                                  | <b>C</b>                                                                                                                                                                             |
| Molecular Structure: Bonding mechanisms<br>bonds; Covalent bonds; the Hydrogen bond; V<br>Waals bonds. Molecular vibration and rotation s<br>Molecular orbitals: Hydrogen molecular ic<br>molecule; bonding in complex molecules.                                               | Van derbonds; Covalent bonds; the Hydrogen bond; Van derspectra.Waals bonds. Molecular vibration and rotation spectra.                                                               |
| Solid State Physics: Ionic solids; covalent metallic solids; molecular crystals; amorphous                                                                                                                                                                                      |                                                                                                                                                                                      |

| Classical models of electrical and heat conductivities in solids; Ohm's Law; Wiedemann-Franz law; the quantum view point.                                                                                                                                                  | solids. Classical models of electrical and heat<br>conductivities in solids; Ohm's Law; Wiedemann<br>Franz law; the quantum view point.                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lasers: Absorption, Spontaneous and Stimulated<br>emissions; Population inversion; laser action; typical<br>gas (He-Ne/CO2) characteristics.<br>12 Hours                                                                                                                   | Lasers: Absorption, Spontaneous and Stimulated<br>emissions; Population inversion; laser action;<br>typical gas (He Ne/CO2) characteristics.<br>12 Hours                                                                                                                  |
| Unit IV                                                                                                                                                                                                                                                                    | Unit IV                                                                                                                                                                                                                                                                   |
| Magnetism; Magnetic moment; Magnetization.<br>Magnetic materials: Diamagnetic, paramagnetic and<br>ferromagnetic materials. Superconductivity<br>phenomenon.                                                                                                               | Magnetism; Magnetic moment; Magnetization.<br>Magnetic materials: Diamagnetic, paramagnetic and<br>ferromagnetic materials. Superconductivity<br>phenomenon.                                                                                                              |
| Nuclear Structure: Nuclear properties: Charge, Mass,<br>Size and Structure; Nuclear spin and magnetic<br>moment; Nuclear Magnetic Resonance (NMR)<br>phenomenon. Binding energy and nuclear forces. The<br>liquid drop model. Radioactivity: Decay constant,<br>Half-life. | Nuclear Structure: Nuclear properties: Charge, Mass,<br>Size and Structure; Nuclear spin and magnetic<br>moment; Nuclear Magnetic Resonance (NMR)<br>phenomenon. Binding energy and nuclear forces. The<br>liquid drop model.Radioactivity: Decay constant, Half<br>life. |
| Nuclear Fission / Fusion: Fission – Basic process; a simple model; a typical nuclear reactor. Fusion: basic process; stellar energy.                                                                                                                                       | Nuclear Fission / Fusion: Fission – Basic process; a simple model; a typical nuclear reactor. Fusion: basic process; stellar energy.                                                                                                                                      |
| <b>Relativity:</b> The Michelson-Morely experiment.<br>Postulates of Special theory of Relativity; Time<br>dilation; Length contraction; Simultaneity of events; E<br>= mc2.<br>12 Hours                                                                                   | <b>Relativity:</b> The Michelson Morely experiment.<br>Postulates of Special theory of Relativity; Time<br>dilation; Length contraction; Simultaneity of events; E<br>= mc2.<br>12 Hours                                                                                  |
|                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                           |

|                                                                                                                                          | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                          | <ol> <li>Modern Physics (2nd Ed) Serway, Moses and<br/>Moyer, Saunders College Pub, 1997.</li> <li>Fundamentals of Physics extended with Modern<br/>Physics (4th Ed) Halliday, Resnick and Walker, John<br/>Wiley, 1993.</li> </ol>                                                                                                                                                                                                                              | <ol> <li>Modern Physics (2nd Ed) Serway, Moses and<br/>Moyer, Saunders College Pub, 1997.</li> <li>Fundamentals of Physics extended with<br/>Modern Physics (4th Ed) Halliday, Resnick<br/>and Walker, John Wiley, 1993.</li> </ol>                                                                                                                                                                                                                               |
| PG85T304<br>(Course PHET<br>3.4): Elective- II:                                                                                          | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.4): Elective- II:<br>Course PHET<br>3.4a:<br>Instrumental<br>Methods<br>Teaching hours per<br>week: 4<br>No. of Credits per<br>week: 4 | <b>Electronic instruments for measurement</b> – Single<br>and dual power supply units. Digital voltmeter -<br>principles of electronic multimeter, digital multimeter,<br>Q meter, Power meter, Electronic LCR meter,<br>Frequency & time interval counters. Electronic<br>instruments for signal generation & analysis – Function<br>generators, Pulse generators, Frequency synthesizer,<br>Principles & applications of cathode ray oscilloscope.<br>12 hours | <b>Electronic instruments for measurement</b> – Single<br>and dual power supply units. Digital voltmeter<br>principles of electronic multimeter, digital multimeter,<br>Q meter, Power meter, Electronic LCR meter,<br>Frequency & time interval counters. Electronic<br>instruments for signal generation & analysis –<br>Function generators, Pulse generators, Frequency<br>synthesizer, Principles & applications of cathode ray<br>oscilloscope.<br>12 Hours |
|                                                                                                                                          | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                          | <b>UV/Visible Absorption Spectrometry:</b> Concept of electronic energy levels, transitions, Beer's law and its limitations. Instrumentation: Components of Colorimeter, Single beam spectrometer, Double beam spectrophotometer; principle, construction and working, sampling technique; Applications.                                                                                                                                                         | <b>UV/Visible Absorption Spectrometry:</b> Concept of electronic energy levels, transitions, Beer's law and its limitations. Instrumentation: Components of Colorimeter, Single beam spectrometer, Double beam spectrophotometer; principle, construction and working, sampling technique; Applications.                                                                                                                                                          |
|                                                                                                                                          | <b>Infrared Absorption Spectrometry:</b> Concept of molecular vibrational energy levels, transitions. Instrumentation: Components of single beam and                                                                                                                                                                                                                                                                                                             | molecular vibrational energy levels, transitions.                                                                                                                                                                                                                                                                                                                                                                                                                 |

| double beam spectrometers; principle, construction,<br>working, sampling technique; Applications<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                  | double beam spectrometers; principle, construction,<br>working, sampling technique; Applications<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Fluorescence Spectrometry:</b> Fluorescence and Phosphorescence phenomena(with energy level diagram). quantum yield, fluorescence quenching, rate parameters, radiative and natural lifetime. Fluorimeter: Basic components, principle, construction, working, sampling technique; Applications.                                                                                                                                                                                                           | <b>Fluorescence Spectrometry:</b> Fluorescence and<br>Phosphorescence phenomena(with energy level<br>diagram). quantum yield, fluorescence quenching, rate<br>parameters, radiative and natural lifetime. Fluorimeter:<br>Basic components, principle, construction, working,<br>sampling technique; Applications.                                                                                                                                                                                           |
| Nuclear Magnetic Resonance Spectrometry:<br>Principle of resonance; the chemical shift. Components<br>of NMR spectrometer: principle, construction,<br>working, sampling technique; Applications.<br>12 hours                                                                                                                                                                                                                                                                                                 | Nuclear Magnetic Resonance Spectrometry:<br>Principle of resonance; the chemical shift.<br>Components of NMR spectrometer: principle,<br>construction, working, sampling technique;<br>Applications.<br>12 Hours                                                                                                                                                                                                                                                                                             |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Radioactivity and its Applications:<br>Radioactivity: Unit of radioactivity, source strength,<br>production and decay of radioactivity, alpha decay,<br>beta decay, gamma decay, natural and artificial<br>radioactivity, Geiger counter, NaI(Tl) detector.<br>Applications of Nuclear Physics: Trace element<br>analysis, mass spectrometry with accelerators. Alpha<br>decay application, diagnostic nuclear medicine,<br>therapeutic nuclear medicine, food preservation, plant<br>metabolism.<br>12 hours | Radioactivity and its Applications<br>Radioactivity: Unit of radioactivity, source strength,<br>production and decay of radioactivity, alpha decay,<br>beta decay, gamma decay, natural and artificial<br>radioactivity, Geiger counter, NaI(Tl) detector.<br>Applications of Nuclear Physics: Trace element<br>analysis, mass spectrometry with accelerators. Alpha<br>decay application, diagnostic nuclear medicine,<br>therapeutic nuclear medicine, food preservation, plant<br>metabolism.<br>12 Hours |

|                                                                                                             | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | <ol> <li>Cooper W Electronic Instrumentation &amp;<br/>Measurement Technique – Prentice Hall of India.</li> <li>George C. Barney, Intelligent Instrumentation –<br/>Prentice Hall India</li> <li>Instrumental Methods of Analysis : H. H. Willard, L.<br/>L. Merrit, J. A. Dean and F. A. Settle, J. K. Jain for<br/>CBS Publishers (1986)</li> <li>Principles of Instrumental Analysis (5th ed) : D. A.<br/>Skoog, F. J. Holler &amp; T. A. Nieman, Harcourt Asia Pte.<br/>Ltd. (1998)</li> <li>Fundamentals of Molecular Spectroscopy : C. N.<br/>Banwell and E.M. McCash, Tata Mc Graw-Hill Co.,<br/>4th revised edition, (9th reprint, 2000).</li> <li>Introductory Nuclear Physsics: Kenneth s Krane,<br/>John-Wiley and Sons (2005).</li> </ol> | <ol> <li>Cooper W. Electronic Instrumentation &amp;<br/>Measurement Technique – Prentice Hall of<br/>India.</li> <li>George C. Barney, Intelligent Instrumentation<br/>– Prentice Hall India</li> <li>Instrumental Methods of Analysis : H. H.<br/>Willard, L. L. Merrit, J. A. Dean and F. A.<br/>Settle, J. K. Jain for CBS Publishers (1986)</li> <li>Principles of Instrumental Analysis (5th ed) :<br/>D. A. Skoog, F. J. Holler &amp; T. A. Nieman,<br/>Harcourt Asia Pte. Ltd. (1998)</li> <li>Fundamentals of Molecular Spectroscopy : C.<br/>N. Banwell and E.M. McCash, Tata Mc Graw<br/>Hill Co., 4th revised edition, (9th reprint,<br/>2000).</li> <li>Introductory Nuclear Physsics: Kenneth s<br/>Krane, John Wiley and Sons (2005).</li> </ol> |
| PG85T304<br>(Course PHET<br>3.4): Elective- II:                                                             | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>3.4):</b> Elective- II.<br>Course PHET<br><b>3.4b:</b> Physics of<br>Nanomaterials<br>Teaching hours per | <b>Basics of nanoscience:</b> The nanoscale, historical background, quantum confinement, size dependent properties, types of nanomaterials, fullerenes, nanowires, nanotubes, thin film.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Basics of nanoscience:</b> The nanoscale, historical background, quantum confinement, size dependent properties, types of nanomaterials, fullerenes, nanowires, nanotubes, thin film.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| week: 4<br>No. of Credits per<br>week: 4                                                                    | <b>Basic quantum mechanics:</b> Wave-particle duality,<br>Heisenberg uncertainty principle Schrödinger equation<br>solution of one-dimensional time-independent<br>equation, particle in a one-dimensional box; density of<br>states for zero-, one-, two- and three-dimensional box;                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Basic quantum mechanics:</b> Wave particle duality,<br>Heisenberg uncertainty principle Schrödinger equation<br>solution of one dimensional time independent<br>equation, particle in a one dimensional box; density of<br>states for zero, one, two and three dimensional box;                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| particle in a coulomb potential. Tunneling of a particle<br>through potential barrier<br>12 hours                                                                                                                                                                                                                           | particle in a coulomb potential. Tunneling of a particle<br>through potential barrier<br>12 Hours                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit II                                                                                                                                                                                                                                                                                                                     | Unit II                                                                                                                                                                                                                                                           |
| <b>Synthesis of nanomaterials:</b> Physical methods<br>mechanicalball milling, melt mixing; evaporation<br>ion sputtering, laser ablation, laser pyrolysis, chemical<br>vapour deposition, molecular beam epitaxy. Chemical<br>methods: colloidal synthesis and capping of<br>nanoparticles. Types of nanoparticles metals, | Synthesis of nanomaterials: Physical methods<br>mechanical ball milling, melt mixing; evaporation ion<br>sputtering, laser ablation, laser pyrolysis, chemical<br>vapour deposition, molecular beam epitaxy.<br>Chemical methods: colloidal synthesis and capping |
| semiconductors, graphene, carbon nano tubes etc.<br>12 hours                                                                                                                                                                                                                                                                | of nanoparticles. Types of nanoparticles metals,<br>semiconductors, graphene, carbon nano tubes etc.<br>12 Hours                                                                                                                                                  |
| Unit III                                                                                                                                                                                                                                                                                                                    | Unit III                                                                                                                                                                                                                                                          |
| <b>Characterization techniques:</b> microscopesoptical,<br>SEM, TEM, STM, AFM; diffract-tion techniques -<br>XRD, EXAFS neutron diffraction; spectroscopesUV-<br>visible-IR absorption, FTIR, Photoluminescence<br>12 hours                                                                                                 | <b>Characterization techniques:</b> microscopes optical,<br>SEM, TEM, STM, AFM; diffract tion techniques<br>XRD, EXAFS neutron diffraction; spectroscopes UV<br>visible IR absorption, FTIR, Photoluminescence.<br>12 Hours                                       |
| Unit IV                                                                                                                                                                                                                                                                                                                     | Unit IV                                                                                                                                                                                                                                                           |
| <b>Properties of nanomaterials:</b> Mechanical; Electricalclassification - metals semi-conductors, insulators,                                                                                                                                                                                                              | <b>Properties of nanomaterials:</b> Mechanical; Electrical classification metals semi conductors, insulators, band                                                                                                                                                |

| para-, ferro-, antiferro-; nano-magnetism<br>12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ferro , antiferro ; nano magnetism.<br>12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. Nanotechnology: Principles and practices, S. K<br>Kulkarni, Capital Publ. Co., New Delhi (2007) 2.<br>Nanocrystals : Synthesis, Properties and Applications,<br>C.N.R.Rao, P. John Thomas and G.U. Kulkarni,<br>Springer series in Materials Science <b>95</b> , Springer-<br>Verlag, Berlin, Heidelburg (2007).                                                                                                                                                                                                                                       | <ol> <li>Nanotechnology: Principles and practices, S. K<br/>Kulkarni, Capital Publ. Co., New Delhi (2007)</li> <li>Nanocrystals : Synthesis, Properties and<br/>Applications, C.N.R.Rao, P. John Thomas and<br/>G.U. Kulkarni, Springer series in Materials<br/>Science 95, Springer Verlag, Berlin,<br/>Heidelburg (2007).</li> </ol>                                                                                                                                                                                                                       |
| Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>Quantum Mechanics – Vol 1 &amp; 2, Cohen, Tannoudji</li> <li>The Physics and Chemistry of Solids, Stephen Elliot<br/>&amp; S.R. Elliot</li> <li>Solid State Physics- A.J. Dekker</li> <li>Introduction to Nanotechnology- Charles P.Poole Jr<br/>and Franks J. Owens</li> <li>Electronic Transport in macroscopic systems,<br/>Supriyo Datta</li> <li>Nanotubes and Naowires- CNR Rao and A<br/>Govindaraj, RCS Publishing.</li> <li>From Atom to Transistor- Supriyo Datta</li> <li>Encyclopedia of Nanotechnology- Hari singh Nalwa</li> </ol> | <ol> <li>Quantum Mechanics – Vol 1 &amp; 2, Cohen,<br/>Tannoudji</li> <li>The Physics and Chemistry of Solids, Stephen<br/>Elliot &amp; S.R. Elliot</li> <li>Solid State Physics A.J. Dekker</li> <li>Introduction to Nanotechnology Charles<br/>P.Poole Jr and Franks J. Owens</li> <li>Electronic Transport in macroscopic systems,<br/>Supriyo Datta</li> <li>Nanotubes and Naowires CNR Rao and A<br/>Govindaraj, RCS Publishing.</li> <li>From Atom to Transistor Supriyo Datta</li> <li>Encyclopedia of Nanotechnology Hari singh<br/>Nalwa</li> </ol> |